Matching Items (10)
131505-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsMintz, David Anthony (Co-author) / Parker, Augustus (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131506-Thumbnail Image.png
Description
Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that

Calcium is the only ion capable of triggering electrical and chemical reactions in cells which are part of essential biomolecular processes, such as gene transcription and ion flux. Calcium homeostasis, the control of concentration levels, is therefore crucial for the proper functioning of cells. For example, cardiomyocytes, the cells that form cardiac muscle, rely on calcium transfer process to produce muscle contraction.
The purpose of this work is to study aspects of calcium homeostasis in the model organism Saccharomyces cerevisiae, common yeast. Using luminometric techniques, the response of the yeast was monitored against a set of changes in the environment calcium abundance. The results indicate a complex response as both increase and decreases of external calcium induce elevations in cytosolic calcium concentrations.
Calcium is transferred across compartments by means of channels. In Saccharomyces cerevisiae, many of them have been identified; Cch1p-Mid1p, Vcx1p, Pmc1p, Pmr1p, and Yvc1p. Their participation in calcium homeostasis is well established. Observations of cytosolic calcium increase after a hypertonic shock are mainly associated with influx of ions from the environment though the Cch1p-Mid1p. This process is generally considered as driven by calcium concentration gradients. However, recent studies have suggested that the plasma membrane channel, Cch1p-Mid1p, may possess more sophisticated regulation and sensory mechanisms. The results of our experiments support these ideas.
We carried out experiments that subjected yeast to multiple shocks: a hypertonic shock followed by either a second hypertonic shock, a hypotonic shock, or a yeast dilution pulse where the solution volume increases by the calcium concentration has only a small change. The cytosolic calcium concentration of a yeast population was monitored via luminometry.
The main result of this study is the observation of an unexpected response to the combination of hypertonic and hypotonic shocks. In this case it was observed that the cytosolic calcium concentration increased after both shocks. This indicates that cytosolic calcium increases are not solely driven by the presence of concentration gradients. The response after the hypotonic pulse arises from more complex mechanisms that may include sensor activity at the membrane channels and the release of calcium from internal storages.
ContributorsParker, Augustus Carrucciu (Co-author) / Mintz, David (Co-author) / Solis, Francisco (Thesis director) / Marshall, Pamela (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132463-Thumbnail Image.png
Description
The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher

The primary objective of this project is to further the knowledge about SCL26 family of anion transporters. The goals of the experiment were to find the lowest sulfate concentration where the yeast without Sulp1 and Sulp2 is able to grow, but it grows very slowly, and to find a higher sulfate concentration where the yeast grows quickly, with or without the sulfate transporters. The lowest sulfate concentration where the yeast without the sulfate transporters is able to grow was determined to be 2-4 mM, however, this range can likely be refined by more quantitative analytical methods. At a sulfate concentration of 20 mM sulfate or higher, the yeast is able to grow quickly without high-affinity sulfate transporters. The next step in the project is to re-introduce the Sulp1 and Sulp2 genes into the yeast, so that growth in low and high sulfate conditions can be compared with and without the Sulp1 and Sulp2 proteins. The long-term goals of the project are to bring experience with yeast to Dr. Nannenga’s structural discovery lab, to determine if yeast sulfate transporters respond in the same way to drug candidates as human sulfate transporters, and to determine the structure of the proteins using cryo-electron microscopy.
ContributorsCall, Nicolas I (Author) / Nannenga, Brent (Thesis director) / Wang, Xuan (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133856-Thumbnail Image.png
Description
Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to

Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to demonstrate reliable regulators which are programmable and specific, yet also allow for a high dynamic range of control. Inspired by the characteristics of the RNA toehold switch in E. coli, this project attempts utilize artificial introns and complementary trans-acting RNAs for gene regulation in a eukaryote host, S. cerevisiae. Following modification to an artificial intron, splicing control with RNA hairpins was demonstrated. Temperature shifts led to increased protein production likely due to increased splicing due to hairpin loosening. Progress is underway to demonstrate trans-acting RNA interaction to control splicing. With continued development, we hope to provide a programmable, specific, and effective means for translational gene regulation in S. cerevisae.
ContributorsDorr, Brandon Arthur (Author) / Wang, Xiao (Thesis director) / Green, Alexander (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148429-Thumbnail Image.png
Description

Extrachromosomal circular DNA (eccDNA) has been identified in a broad range of eukaryotes and have been shown to carry genes and regulatory sequences. Additionally, they can amplify within a cell by autonomous replication or reintegration into the genome, effectively influencing copy number in cells. This has significant implications for cancer,

Extrachromosomal circular DNA (eccDNA) has been identified in a broad range of eukaryotes and have been shown to carry genes and regulatory sequences. Additionally, they can amplify within a cell by autonomous replication or reintegration into the genome, effectively influencing copy number in cells. This has significant implications for cancer, where oncogenes are frequently amplified on eccDNA. However, little is known about the exact molecular mechanisms governing eccDNA functionality. To this end, we constructed a fluorescent reporter at an eccDNA-prone locus of the yeast genome, CUP1. It is our hope that this reporter will contribute to a better understanding of eccDNA formation and amplification within a cell.

ContributorsKeal, Tula Ann (Author) / Wang, Xiao (Thesis director) / Tian, Xiaojun (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
187419-Thumbnail Image.png
Description
Protein misfolding is a problem faced by all organisms, but the reasons behind misfolded protein toxicity are largely unknown. It is difficult to pinpoint one exact mechanism as the effects of misfolded proteins can be widespread and variable between cells. To better understand their impacts, here I explore the consequences

Protein misfolding is a problem faced by all organisms, but the reasons behind misfolded protein toxicity are largely unknown. It is difficult to pinpoint one exact mechanism as the effects of misfolded proteins can be widespread and variable between cells. To better understand their impacts, here I explore the consequences of misfolded proteins and if they affect all cells equally or affect some cells more than others. To investigate cell subpopulations, I built and optimized a cutting-edge single-cell RNA sequencing platform (scRNAseq) for yeast. By using scRNAseq, I can study the expression variability of many genes (i.e. how the transcriptomes of single cells differ from one another). To induce misfolding and study how single cells deal with this stress, I use engineered strains with varying degrees of an orthogonal misfolded protein. When I computationally cluster the cells expressing misfolded proteins by their sequenced transcriptomes, I see more cells with the severely misfolded protein in subpopulations undergoing canonical stress responses. For example, I see these cells tend to overexpress chaperones, and upregulate mitochondrial biogenesis and transmembrane transport. Both of these are hallmarks of the “Generalized” or “Environmental Stress Response” (ESR) in yeast. Interestingly, I do not see all components of the ESR upregulated in all cells, which may suggest that the massive transcriptional changes characteristic of the ESR are an artifact of having defined the ESR in bulk studies. Instead, I see some cells activate chaperones, while others activate respiration in response to stress. Another intriguing finding is that growth supporting proteins, such as ribosomes, have particularly heterogeneous expression levels in cells expressing misfolded proteins. This suggests that these cells potentially reallocate their metabolic functions at the expense of growth but not all cells respond the same. In sum, by using my novel single-cell approach, I have gleaned new insights about how cells respond to stress. which can help me better understand diseased cells. These results also teach how cells contend with mutation, which commonly causes protein misfolding and is the raw material of evolution. My results are the first to explore single-cell transcriptional responses to protein misfolding and suggest that the toxicity from misfolded proteins may affect some cells’ transcriptomes differently than others.
ContributorsEder, Rachel (Author) / Geiler-Samerotte, Kerry (Thesis advisor) / Brettner, Leandra (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023
172898-Thumbnail Image.png
Description

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is

Telomeres are sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling, which could cause irregularities in normal DNA functions. As cells replicate, telomeres shorten at the end of chromosomes, which correlates to senescence or cellular aging. Integral to this process is telomerase, which is an enzyme that repairs telomeres and is present in various cells in the human body, especially during human growth and development. Telomeres and telomerase are required for normal human embryonic development because they protect DNA as it completes multiple rounds of replication.

Created2015-02-11
130967-Thumbnail Image.png
Description
Exposure of harmful ultraviolet rays (UV) is a great concern in many locations around the world, as skin diseases and cancer continue to surge. With the number of skin cancer skyrocketing past all the types of known cancers, a vast majority of cases are reported daily. When the skin is

Exposure of harmful ultraviolet rays (UV) is a great concern in many locations around the world, as skin diseases and cancer continue to surge. With the number of skin cancer skyrocketing past all the types of known cancers, a vast majority of cases are reported daily. When the skin is exposed to UVA or UVB radiation, primarily from the sun, the UV radiation damages the DNA within the cells, which results in skin cancer. However, most damaged DNA of cells can undergo nucleotide excision repair. This involves a nuclease molecule that cuts the damaged bases. Preliminary research has developed other ways of repairing DNA damage in cells by implementing organic compounds. An organic chemical such as, ferulic acid has the ability to aid the mechanisms involved in nucleotide excision repair that takes place in your cells after DNA damage.

To test this, Saccharomyces cerevisiae was utilized. This is a primary model used in most medicinal studies due to the resemblance to human cells. This study evaluates the effect of ferulic acid, concentrations on ultraviolet radiated Rad 1 (mutant) and HB0 (wild type) yeast cells. The yeast strains were grown in two different concentrations for ferulic acid and treated with long-wave UV light under 30 seconds, 45 seconds, and 60 seconds. It is observed that, Rad 1 had heavier growth in the presence of high concentration of ferulic acid after UV treatment than HB0. But, HB0 yeast had heavier growth in the presence of lower concentrations of ferulic acid after UV treatment. Ferulic acid concentrations of 1 mM can influence cell repair after UV application by mRNA expression during nucleotide excision repair and higher absorption of UV.
ContributorsSabir, Zhino Lashkry (Author) / Marshall, Pamela (Thesis director) / Quaranta, Kimberly (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
168771-Thumbnail Image.png
Description
Extrachromosomal circular DNA (eccDNA) has become an increasingly popular subject of study in eukaryotic cell biology due to its prevalence in human cancer. Though the literature reports a consensus regarding DNA break repair as a driver of eccDNA formation, there remains a lack of knowledge surrounding the exact mechanisms for

Extrachromosomal circular DNA (eccDNA) has become an increasingly popular subject of study in eukaryotic cell biology due to its prevalence in human cancer. Though the literature reports a consensus regarding DNA break repair as a driver of eccDNA formation, there remains a lack of knowledge surrounding the exact mechanisms for eccDNA formation and the selective dynamics that promote their retainment in a cell or population. A central issue to studying eccDNA is the inability to distinguish between linear and circular DNA of homologous sequence. The work presented here describes an adapted eccDNA enrichment and detection assay, specifically for investigating the effects of manipulating a known eccDNA-forming locus in the budding yeast Saccharomyces cerevisiae. First, a galactose inducible GFP reporter was integrated within the copper inducible CUP1 tandem repeat locus of yeast cells. The eccDNA enrichment and detection assay was first applied to wildtype yeast to demonstrate the presence of CUP1 eccDNA in copper induced cells by qPCR. Although subsequent sequencing analysis failed to validate this result, it indicated the presence of various other known and previously un-reported eccDNA species. Finally, application of the enrichment protocol and qPCR detection assay to CUP1-GFP reporter cells yielded inconclusive results, suggesting the assay requires further optimization to sensitively detect eccDNA from this altered locus. While more work is necessary to draw conclusions regarding the limits of eccDNA production at a manipulated eccDNA-forming locus, this knowledge will lend to the potential for therapeutically targeting eccDNA at the point of de novo formation.
ContributorsKeal, Tula (Author) / Wang, Xiao (Thesis advisor) / Tian, Xiaojun (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
165220-Thumbnail Image.png
Description

Pathogenic drug resistance is a major global health concern. Thus, there is great interest in modeling the behavior of resistant mutations–how quickly they will rise in frequency within a population, and whether they come with fitness tradeoffs that can form the basis of treatment strategies. These models often depend on

Pathogenic drug resistance is a major global health concern. Thus, there is great interest in modeling the behavior of resistant mutations–how quickly they will rise in frequency within a population, and whether they come with fitness tradeoffs that can form the basis of treatment strategies. These models often depend on precise measurements of the relative fitness advantage (s) for each mutation and the strength of the fitness tradeoff that each mutation suffers in other contexts. Precisely quantifying s helps us create better, more accurate models of how mutants act in different treatment strategies. For example, P. falciparum acquires antimalarial drug resistance through a series of mutations to a single gene. Prior work in yeast expressing this P. falciparum gene demonstrated that mutations come with tradeoffs. Computational work has demonstrated the possibility of a treatment strategy which enriches for a particular resistant mutation that then makes the population grow poorly once the drug is removed. This treatment strategy requires knowledge of s and how it changes when multiple mutants are competing across various drug concentrations. Here, we precisely quantified s in varying drug concentrations for five resistant mutants, each of which provide varying degrees of drug resistance to antimalarial drugs. DNA barcodes were used to label each strain, allowing the mutants to be pooled together for direct competition in different concentrations of drug. This will provide data that can make the models more accurate, potentially facilitating more effective drug treatments in the future.

ContributorsNewell, Daphne (Author) / Geiler-Samerotte, Kerry (Thesis director) / Schmidlin, Kara (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05