Matching Items (8)
Filtering by

Clear all filters

135819-Thumbnail Image.png
Description
This thesis examines how the physical construction of the ooloi Oankali aliens in Octavia Butler's trilogy Lilith's Brood enables the text to explore the limitations of a two-gender construct. It does so by positing the existence of other conscious organic life with a third gender outside the scope of Earth-bound

This thesis examines how the physical construction of the ooloi Oankali aliens in Octavia Butler's trilogy Lilith's Brood enables the text to explore the limitations of a two-gender construct. It does so by positing the existence of other conscious organic life with a third gender outside the scope of Earth-bound organisms. The ooloi must be understood by a definition of gender that takes into consideration socially constructed and performed roles. The physical bodies of the ooloi have a "boundary-crossing" identity that is unambiguous. Their transformative and healing abilities, physical characteristics, and place in the social structure of the Oankali makes them the targets of disgust and hatred by humans who fear difference. This thesis analyzes how Butler uses the ooloi to demonstrate the possibility that humans living on a future Earth can supersede their innately destructive qualities.
ContributorsBrady, Sarah Rachel (Author) / Hattenhauer, Darryl (Thesis director) / Cook, Paul (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137120-Thumbnail Image.png
Description
Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be

Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be addressed. As such, this paper provides an overview of the effects of biomedical technology in science fiction films. The discussions in this paper will analyze the different portrayals of the technology in the viewed cinematic pieces and the effects they have on the characters in the film. The discussion will begin with the films that have technology based in Genetic Engineering. This will then be followed by a discussion of the biomedical technology based in the fields of Endocrinology; Reanimation; Preservation; Prosthetics; Physical Metamorphosis; Super-Drugs and Super-Viruses; and Diagnostic, Surgical, and Monitoring Equipment. At the end of this paper movie summaries are provided to assist in clarifying plot details.
ContributorsGrzybowski, Amanda Ann (Author) / Foy, Joseph (Thesis director) / Facinelli, Diane (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
131031-Thumbnail Image.png
Description
Time travel is closely associated with futuristic science fiction, but it is a concept that dates back to ancient times. Over many generations it has been developed and explored narratively and scientifically. This paper aims to document and analyze the history of the time travel concept and the important role

Time travel is closely associated with futuristic science fiction, but it is a concept that dates back to ancient times. Over many generations it has been developed and explored narratively and scientifically. This paper aims to document and analyze the history of the time travel concept and the important role fiction had in its development.
ContributorsElkins, Sydney (Author) / Foy, Joseph (Thesis director) / Maynard, Andrew (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
DescriptionThis project covers the history and background of the phenomenon in quantum physics known as quantum entanglement. The paper then describes the experiments done by the 2022 Nobel Prize winners on entangled particles and the possible real-world applications of such research.
ContributorsHossain, Tasnia (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
166212-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsAndersen, Liam (Author) / Bujan, Reynaldo R. (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
166213-Thumbnail Image.png
Description

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from

Our work explores a fascinating experiment in physics and science, the Double-Slit Experiment. We cover the mystery of this experiment, representing the wave and particle nature of photons, electrons, and quantum elements. We recount the history of quantum physics, an unknown field for most people due to its detachment from the world we see. Finally, we explore the capability of the human eye to detect light in its quantum state, closing the gap between us and quantum physics.

ContributorsBujan, Reynaldo R. (Author) / Andersen, Liam (Co-author) / Foy, Joseph (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
147783-Thumbnail Image.png
Description

This paper analyzes the history and impact of the double-slit experiment on the world of physics. The experiment was initially created by Thomas Young in the early nineteenth century to prove that light behaved as a wave, and the experiment’s findings ended up being foundational to the classical wave theory

This paper analyzes the history and impact of the double-slit experiment on the world of physics. The experiment was initially created by Thomas Young in the early nineteenth century to prove that light behaved as a wave, and the experiment’s findings ended up being foundational to the classical wave theory of light. Decades later, the experiment was replicated once more with electrons instead of light and shockingly demonstrated that electrons possessed a dual nature of behavior in that they acted in some instances as particles and in others as waves. Despite numerous modifications and replications, the dual behavior of electrons has never been definitively explained. Numerous interpretations of quantum mechanics all offer their own explanations of the double-slit experiment’s results. Notably, the Copenhagen Interpretation states that an observer measuring a quantum system, such as the double-slit experiment, causes the electrons to behave classically (i.e. as a particle.) The Many Worlds Interpretation offers that multiple branching worlds come into existence to represent the physical occurrence of all probable outcomes of the double-slit experiment. In these and other interpretations, explanations of the double-slit experiment are key to proving their respective dogmas. The double-slit experiment has historically been very important to the worlds of both classical and quantum physics and is still being modified and replicated to this day. It is clear that it will continue to remain relevant even in the future of physics.

ContributorsRodriguez, Zachary M (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
We discuss the intricate and puzzling concept of quantum entanglement, and not only define it but also consider the implications of the behaviors of entangled particles. The ability of these particles to provide instantaneous information about their entangled counterparts sparked a debate among physicists as to whether or not these particles had

We discuss the intricate and puzzling concept of quantum entanglement, and not only define it but also consider the implications of the behaviors of entangled particles. The ability of these particles to provide instantaneous information about their entangled counterparts sparked a debate among physicists as to whether or not these particles had definite quantities before measurement, and whether or not their behaviors could be explained by a local hidden-variables theorem. Mermin’s gedanken demonstration for a two-particle entangled system is introduced, as well as Bell’s inequality, and an explanation of how a pair of two entangled particles violate this inequality. Additionally, we also discuss various experimental verifications that were able to use Bell’s inequality to verify the expected quantum mechanical results for their entangled systems.
ContributorsDavis, Elsie (Author) / Foy, Joseph (Thesis director) / Hines, Taylor (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2024-05