Matching Items (11)
Filtering by

Clear all filters

150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
136686-Thumbnail Image.png
Description
Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear

Collective decision making in social organism societies involves a large network of communication systems. Studying the processes behind the transmission of information allows for greater understanding of the decision making capabilities of a group. For Temnothorax rugatulus colonies, information is commonly spread in the form of tandem running, a linear recruitment pattern where a leading ant uses a short-ranged pheromone to direct a following ant to a target location (in tandem).The observed phenomenon of reverse tandem running (RTR), where a follower is lead from a target back to the home nest, has not been as extensively studied as forward tandem running and transportation recruitment activities. This study seeks to explain a potential reason for the presence of the RTR behavior; more specifically, the study explores the idea that reverse tandem run followers are being shown a specific route to the home nest by a highly experienced and efficient leading ant. Ten colonies had migrations induced experimentally in order to generate some reverse tandem running activity. Once an RTR has been observed, the follower and leader were studied for behavior and their pathways were analyzed. It was seen that while RTR paths were quite efficient (1.4x a straight line distance), followers did not experience a statistically significant improvement in their pathways between the home and target nests (based on total distance traveled) when compared to similar non-RTR ants. Further, RTR leading ants were no more efficient than other non-RTR ants. It was observed that some followers began recruiting after completion of an RTR, but the number than changed their behavior was not significant. Thus, the results of this experiment cannot conclusively show that RTR followers are utilizing reverse tandem runs to improve their routes between the home and target nests.
ContributorsColling, Blake David (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / Sasaki, Takao (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-12
137543-Thumbnail Image.png
Description
Temnothorax ants are a model species for studying collective decision-making. When presented with multiple nest sites, they are able to collectively select the best one and move the colony there. When a scout encounters a nest site, she will spend some time exploring it. In theory she should explore the

Temnothorax ants are a model species for studying collective decision-making. When presented with multiple nest sites, they are able to collectively select the best one and move the colony there. When a scout encounters a nest site, she will spend some time exploring it. In theory she should explore the site for long enough to determine both its quality and an estimate of the number of ants there. This ensures that she selects a good nest site and that there are enough scouts who know about the new nest site to aid her in relocating the colony. It also helps to ensure that the colony reaches a consensus rather than dividing between nest sites. When a nest site reaches a certain threshold of ants, a quorum has been reached and the colony is committed to that nest site. If a scout visits a good nest site where a quorum has not been reached, she will lead a tandem run to bring another scout there so that they can learn the way and later aid in recruitment. At a site where a quorum has been reached, scouts will instead perform transports to carry ants and brood there from the old nest. One piece that is missing in all of this is the mechanism. How is a quorum sensed? One hypothesis is that the encounter rate (average number of encounters with nest mates per second) that an ant experiences at a nest site allows her to estimate the population at that site and determine whether a quorum has been reached. In this study, encounter rate and entrance time were both shown to play a role in whether an ant decided to lead a tandem run or perform a transport. Encounter rate was shown to have a significant impact on how much time an ant spent at a nest site before making her decision, and encounter rates significantly increased as migrations progressed. It was also shown to individual ants did not differ from each other in their encounter rates, visit lengths, or entrance times preceding their first transports or tandem runs, studied across four different migrations. Ants were found to spend longer on certain types of encounters, but excluding certain types of encounters from the encounter rate was not found to change the correlations that were observed. It was also found that as the colony performed more migrations, it became significantly faster at moving to the new nest.
ContributorsJohnson, Christal Marie (Author) / Pratt, Stephen (Thesis director) / Pavlic, Theodore (Committee member) / Shaffer, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
130932-Thumbnail Image.png
Description
Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due

Across the animal kingdom, communication serves a vital purpose. The transfer of information between and among species is often paramount to many behaviors including mating, collaboration, and defense. While research has provided tremendous insight into animal communication and interaction, there is still much that we have yet to understand. Due to their reliance on interactions that maximize efficiency within their complicated colony structure and array of member roles, eusocial insects serve as an excellent model for animal communication. Among eusocial insects, ants are some of the most heavily researched, with a tremendous amount of literature focused on their cuticular hydrocarbons. Along with serving as a waterproofing agent, cuticular hydrocarbons also play a major role in recognition and communication in these insects. By studying the importance of hydrocarbons in ant social structure, their tremendously specialized olfactory system, and the use of learning assays in its study, parallels between communication in ants and other animals are revealed, demonstrating how ants serve as a relevant model for animal communication as a whole.
ContributorsSpirek, Benton Forest Ensminger (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to

The desert ant, Novomessor albisetosus, is an ideal model system for studying collective transport in ants and self-organized cooperation in natural systems. Small teams collect and stabilize around objects encountered by these colonies in the field, and the teams carry them in straight paths at a regulated velocity back to nearby nest entrances. The puzzling finding that teams are slower than individuals contrasts other cases of cooperative transport in ants. The statistical distribution of speeds has been found to be consistent with the slowest-ant model, but the key assumption that individual ants consistently vary in speed has not been tested. To test this, information is needed about the natural distribution of individual ant speeds in colonies and whether some ants are intrinsically slow or fast. To investigate the natural, individual-level variation in ants carrying loads, data were collected on single workers carrying fig seeds in arenas separated from other workers. Using three separate, small arenas, the instantaneous speed of each seed-laden worker was recorded when she picked up a fig seed and transported within the arena. Instantaneous speeds were measured by dividing the distance traveled in each frame by how much time had passed.
There were nine ants who transported a fig seed numerous times and there was a clear variation in their average instantaneous speed. Within an ant, slightly varying speeds were found as well, but within-ant speeds were not as varied as speed across ants. These results support the conclusion that there is intrinsic variation in the speed of an individual which supports the slowest-ant model, but this may require further experimentation to test thoroughly. This information aids in the understanding of the natural variation of ants cooperatively carrying larger loads in groups.
ContributorsCastro, Samantha (Author) / Pavlic, Theodore (Thesis director) / Pratt, Stephen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
132382-Thumbnail Image.png
Description
When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported

When ants encounter liquid food, they have two options of transporting that food to their nests. The first is the social bucket method in which liquid is carried in the mandibles of the workers back to the nest. The second is trophallaxis in which liquid is imbibed and then transported inside the ant back to the nest. The liquid is then regurgitated to fellow nestmates. Ectatomma have been observed using the social bucket method of transport and were considered members of the Ponerine family. However, a new phylogeny created by Borowiec and Rabeling places Ectatomma near to Formecinae and Myrmicinae, both know for practicing trophallaxis. This seems to suggest either Ectatomma is able to utilize trophallaxis as well or that the evolutionary practice of trophallaxis is more plastic than previously believed. The ability of Ectatomma ruidum to utilize trophallaxis was examined in two experiments. The first experiment examined E. ruidum’s ability to practice worker to worker trophallaxis and the second examined E. ruidum’s ability to perform worker to larva trophallaxis. The results of both experiments indicated that E. ruidum cannot utilize trophallaxis but the larva of E. ruidum may be able to regurgitate to the workers. These results in turn seem to suggest that trophallaxis is a bit more plastic than originally thought.
ContributorsCunningham, Cassius Alexander (Author) / Pratt, Stephen (Thesis director) / Liebig, Juergen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132471-Thumbnail Image.png
Description
Studies of cooperation remain an important aspect in understanding the evolution of social cues and interactions. One example of cooperation is pleometrosis, an associative behavior of forming a colony with two unrelated, fertile queens. However, most ant species display haplometrosis, the founding of a colony by a single queen. In

Studies of cooperation remain an important aspect in understanding the evolution of social cues and interactions. One example of cooperation is pleometrosis, an associative behavior of forming a colony with two unrelated, fertile queens. However, most ant species display haplometrosis, the founding of a colony by a single queen. In these associations, the queen typically rejects cooperation. In populations of Pogonomyrmex californicus, both pleometrosis and haplometrosis exists. It is not clear how associative -metrosis became a practiced behavior since haplometrotic queens tend to fight. However, as fighting in pleometrotic queens became less frequent, this induces benefit, in terms of cost savings, in having associative behaviors. The hypothesis tested was nest excavation of pleometrotic queens show sociality, while haplometrotic queens show association independence. Isolated pleometrotic queens (P) showed low excavation rate at 2.72cm2/day, compared to the rate when the task was shared in (PP) nests, 4.57cm2/day. Nest area of the (P) queens were also affected during days 3 and 4 of the experiment, where there was presence of nest area decrease. Furthermore, the excavation session of (P) was the only one determined as significant between all other nests. Although the (P) queens have low values, they eventually reach a similar point as the other nests by day 6. However, the lack of haste in excavation leads to longer exposure to the elements, substituting the risk of losing cuticles in excavation for the risk of predation. For the haplometrotic queens, nests of (H) and (HH) displayed no significant difference in excavation values, leading to having social effect in their association.
ContributorsGabriel, Ian Paulo Villalobos (Author) / Fewell, Jennifer (Thesis director) / Pratt, Stephen (Committee member) / Bespalova, Ioulia (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132881-Thumbnail Image.png
Description
Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general,

Temnothorax rugatulus ants are known to recruit via the use of tandem running, a typically two ant interaction in which a leader ant guides a follower ant to a particular location with the intent of teaching the follower ant the knowledge required to navigate to said location independently. In general, the purposes of tandem runs are fairly clear. There are tandem runs towards food in order to recruit gatherers, and there are tandem runs towards potential new nest sites to allow the colony to assess site quality. However, a group of tandem runs known as “reverse tandem runs” are a subject of mystery at this time. Reverse tandem runs are a type of tandem run found mainly during specific spans of Temnothorax colony migration. They typically arise during the period of migration when brood are being transported into a new nest site. The carriers of the brood, when returning to the old nest site to gather more brood, occasionally start tandem runs running backwards towards the old nest. In this study, the effect of navigational and physical obstacles encountered during migrations on the number of reverse tandem runs was tested. The hypothesis being that such a disturbance would cause an increase in reverse tandem runs as a method of overcoming the obstacle. This study was completed over the course of two experiments. This first experiment showed no indication of the ants having any trouble with the applied disturbance, and a second experiment with a larger challenge for the migrating ants was performed. The results of this second experiment showed that a migration obstacle will lead to an increase in migration time as well as an increase in the number of failed reverse tandem runs (reverse tandem runs that started but never reached the old nest). However, it was shown that the number of complete reverse tandem runs (reverse tandem runs that reached the old nest) remained the same whether the obstacle was introduced or not.
ContributorsKang, Byounghoon (Author) / Pratt, Stephen (Thesis director) / Juergen, Liebig (Committee member) / Valentini, Gabriele (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
189225-Thumbnail Image.png
Description
Biogeography places the geographical distribution of biodiversity in an evolutionary context. Ants (Hymenoptera: Formicidae), being a group of ubiquitous, ecologically dominant, and diverse insects, are useful model systems to understand the evolutionary origins and mechanisms of biogeographical patterns across spatial scales. On a global scale, ants have been used to

Biogeography places the geographical distribution of biodiversity in an evolutionary context. Ants (Hymenoptera: Formicidae), being a group of ubiquitous, ecologically dominant, and diverse insects, are useful model systems to understand the evolutionary origins and mechanisms of biogeographical patterns across spatial scales. On a global scale, ants have been used to test hypotheses on the origin and maintenance of the remarkably consistent latitudinal diversity gradient where biodiversity peaks in the equatorial tropics and decreases towards the poles. Additionally, ants have been used to posit and test theories of island biogeography such as the mechanisms of the species-area relationship, being the increase of biodiversity with cumulative land area. However, there are still unanswered questions about ant biogeography such as how specialized life histories contribute to their global biogeographical patterns. Furthermore, there remain island systems in the world’s biodiversity hotspots that harbor much less ant species than predicted by the species-area relationship, which potentially suggests a place ripe for discovery. In this dissertation, I use natural history, taxonomic, geographic, and phylogenetic data to study ant biodiversity and biogeography across spatial scales. First, I study the global biodiversity and biogeography of a specialized set of symbiotic interactions between ant species, here referred to as myrmecosymbioses, with an emphasis on social parasitism where one species exploits the parental care behavior and social colony environment of another species. In addition to characterizing a new myrmecosymbiosis, I use a global biogeographic and phylogenetic dataset to show that ant social parasitism is distributed along an inverse latitudinal diversity gradient where species richness and independent evolutionary origins of social parasitism peak within the northern hemisphere where the least free-living ant diversity exists. Second, I study the unexplored ant fauna of the Vanuatuan archipelago in the South Pacific. Using approximately 10,000 Vanuatuan ant specimens coupled with phylogenomics, I fill in a historical knowledge gap of South Pacific ant biogeography and demonstrate that the Vanuatuan ant fauna is a novel biodiversity hotspot. With these studies, I provide insights into how specialized life histories and unique island biotas shape the global distribution of biodiversity in different ways, especially in the ants.
ContributorsGray, Kyle William (Author) / Rabeling, Christian (Thesis advisor) / Martins, Emilia (Committee member) / Taylor, Jesse (Committee member) / Pratt, Stephen (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2023