Matching Items (4)
Filtering by

Clear all filters

148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
164864-Thumbnail Image.png
Description

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically on COVID-19 cough sound classification. All machine learning algorithms developed or implemented in this study were trained using features from Log Mel Spectrograms of healthy and COVID-19 coughing audio. Results are first presented from a study in which an ensemble of a VGG13, CRNN, GCNN, and GCRNN are utilized to classify audio using classical computing. Then, improved results attained using an optimized VGG13 neural network are presented. Finally, our quantum-classical hybrid neural network is designed and assessed in terms of accuracy and number of quantum layers and qubits. Comparisons are made to classical recurrent and convolutional neural networks.

ContributorsEsposito, Michael (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description
The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse

The cerebellum is recognized for its role in motor movement, balance, and more recently, social behavior. Cerebellar injury at birth and during critical periods reduces social preference in animal models and increases the risk of autism in humans. Social behavior is commonly assessed with the three-chamber test, where a mouse travels between chambers that contain a conspecific and an object confined under a wire cup. However, this test is unable to quantify interactive behaviors between pairs of mice, which could not be tracked until the recent development of machine learning programs that track animal behavior. In this study, both the three-chamber test and a novel freely-moving social interaction test assessed social behavior in untreated male and female mice, as well as in male mice injected with hM3Dq (excitatory) DREADDs. In the three-chamber test, significant differences were found in the time spent (female: p < 0.05, male: p < 0.001) and distance traveled (female: p < 0.05, male: p < 0.001) in the chamber with the familiar conspecific, compared to the chamber with the object, for untreated male, untreated female, and mice with activated hM3Dq DREADDs. A social memory test was added, where the object was replaced with a novel mouse. Untreated male mice spent significantly more time (p < 0.05) and traveled a greater distance (p < 0.05) in the chamber with the novel mouse, while male mice with activated hM3Dq DREADDs spent more time (p<0.05) in the chamber with the familiar conspecific. Data from the freely-moving social interaction test was used to calculate freely-moving interactive behaviors between pairs of mice and interactions with an object. No sex differences were found, but mice with excited hM3Dq DREADDs engaged in significantly more anogenital sniffing (p < 0.05) and side-side contact (p < 0.05) behaviors. All these results indicate how machine learning allows for nuanced insights into how both sex and chemogenetic excitation impact social behavior in freely-moving mice.
ContributorsNelson, Megan (Author) / Verpeut, Jessica (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
Description
Aging presents a complex array of challenges, including increased susceptibility to various diseases due to decrease in the effective function of the immune system. White blood cells, or WBCs, play a crucial role in providing insight into the state of the body and it’s immune system, and is thus, a

Aging presents a complex array of challenges, including increased susceptibility to various diseases due to decrease in the effective function of the immune system. White blood cells, or WBCs, play a crucial role in providing insight into the state of the body and it’s immune system, and is thus, a vital biomarker. Traditionally, obtaining WBC counts involves many man hours and involves labor intensive hand counting of WBCs seen in a blood smear. To streamline this process, machine learning and artificial intelligence may be used. Using a cell counting program, or CCP, this thesis aims to validate the accuracy of the CCP’s capabilities in the cell counting process. We compared CCP generated WBC proportional counts with a ground truth data set, called Zooniverse. From this, a minimal to moderate correlation was found between the CCP generated data and the Zooniverse data. In conjunction with this, significant discrepancies were observed between certain WBC subtypes, suggesting limitations in the CCP performance. Further analysis of the CCP outputted data revealed an uneven distribution of age in the samples considered, which could have produced a biasing result. Linear model regression analyses using CCP data indicated few significant associations between age, sex and the resulting WBC proportions, casting further doubt on the program validity. Our findings highlight both the promise and limitations of automated WBC counting programs. While the CCP model in question depicted that it does indeed offer time saving benefits, the current model’s accuracy in capturing the subtle age related changes in WBC composition are not entirely confirmed. Future improvements in algorithm design and validation methods are necessary to enhance the use of this particular CCP.
ContributorsAnand, Ritika (Author) / Ford, Isabella (Co-author) / Snyder-Mackler, Noah (Thesis director) / Sanchez Rosado, Mitchell (Committee member) / Barrett, The Honors College (Contributor) / WPC Graduate Programs (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05