Matching Items (11)
Filtering by

Clear all filters

149617-Thumbnail Image.png
Description
The ubiquity of embedded computational systems has exploded in recent years impacting everything from hand-held computers and automotive driver assistance to battlefield command and control and autonomous systems. Typical embedded computing systems are characterized by highly resource constrained operating environments. In particular, limited energy resources constrain performance in embedded systems

The ubiquity of embedded computational systems has exploded in recent years impacting everything from hand-held computers and automotive driver assistance to battlefield command and control and autonomous systems. Typical embedded computing systems are characterized by highly resource constrained operating environments. In particular, limited energy resources constrain performance in embedded systems often reliant on independent fuel or battery supplies. Ultimately, mitigating energy consumption without sacrificing performance in these systems is paramount. In this work power/performance optimization emphasizing prevailing data centric applications including video and signal processing is addressed for energy constrained embedded systems. Frameworks are presented which exchange quality of service (QoS) for reduced power consumption enabling power aware energy management. Power aware systems provide users with tools for precisely managing available energy resources in light of user priorities, extending availability when QoS can be sacrificed. Specifically, power aware management tools for next generation bistable electrophoretic displays and the state of the art H.264 video codec are introduced. The multiprocessor system on chip (MPSoC) paradigm is examined in the context of next generation many-core hand-held computing devices. MPSoC architectures promise to breach the power/performance wall prohibiting advancement of complex high performance single core architectures. Several many-core distributed memory MPSoC architectures are commercially available, while the tools necessary to effectively tap their enormous potential remain largely open for discovery. Adaptable scalability in many-core systems is addressed through a scalable high performance multicore H.264 video decoder implemented on the representative Cell Broadband Engine (CBE) architecture. The resulting agile performance scalable system enables efficient adaptive power optimization via decoding-rate driven sleep and voltage/frequency state management. The significant problem of mapping applications onto these architectures is additionally addressed from the perspective of instruction mapping for limited distributed memory architectures with a code overlay generator implemented on the CBE. Finally runtime scheduling and mapping of scalable applications in multitasking environments is addressed through the introduction of a lightweight work partitioning framework targeting streaming applications with low latency and near optimal throughput demonstrated on the CBE.
ContributorsBaker, Michael (Author) / Chatha, Karam S. (Thesis advisor) / Raupp, Gregory B. (Committee member) / Vrudhula, Sarma B. K. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2011
132640-Thumbnail Image.png
Description
Pollution is an increasing problem around the world, and one of the main forms it takes is air pollution. Air pollution, from oxides and dioxides to particulate matter, continues to contribute to millions of deaths each year, which is more than the next three leading causes of environment-related death combined.

Pollution is an increasing problem around the world, and one of the main forms it takes is air pollution. Air pollution, from oxides and dioxides to particulate matter, continues to contribute to millions of deaths each year, which is more than the next three leading causes of environment-related death combined. Plus, the problem is only growing as industrial plants, factories, and transportation continues to rapidly increase across the globe. Those most affected include less developed countries and individuals with pre-existing respiratory conditions. Although many citizens know about this issue, it is often unclear what times and locations are worst in terms of pollutant concentration as it can vary on the time of day, local activity, and other variable factors. As a result, citizens lack the knowledge and resources to properly combat or avoid air pollution, as well as the data and evidence to support any sort of regulatory change. Many companies and organizations have tried to address this through Air Quality Indexes (AQIs) but are not focused enough to help the everyday citizen, and often fail to include many significant pollutants. Thus, we sought to address this issue in a cost-effective way through creating a network of IoT (Internet of Things) devices and deploying them in a select area of Tempe, Arizona. We utilized Arduino Microprocessors and Wireless Radio Frequency Transceivers to send and receive air pollution data in real time. Then, displayed this data in such a way that it could be released to the public via web or mobile app. Furthermore, the product is cheap enough to be reproduced and sold in bulk as well as scaled and customized to be compatible with dozens of different air quality sensors.
ContributorsCoury, Abrahm Philip (Co-author) / Gillespie, Cody (Co-author) / Ren, Fengbo (Thesis director) / Shrivastava, Aviral (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133763-Thumbnail Image.png
Description
The goal of this project is to use an open-source solution to implement a drone Cyber-Physical System that can fly autonomously and accurately. The proof-of-concept to analyze the drone's flight capabilities is to fly in a pattern corresponding to the outline of an image, a process that requires both stability

The goal of this project is to use an open-source solution to implement a drone Cyber-Physical System that can fly autonomously and accurately. The proof-of-concept to analyze the drone's flight capabilities is to fly in a pattern corresponding to the outline of an image, a process that requires both stability and precision to accurately depict the image. In this project, we found that building a Cyber-Physical System is difficult because of the tedious and complex nature of designing and testing the hardware and software solutions of this system. Furthermore, we reflect on the difficulties that arose from using open-source hardware and software.
ContributorsDedinsky, Rachel (Co-author) / Lubbers, Harrison James (Co-author) / Shrivastava, Aviral (Thesis director) / Dougherty, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
161988-Thumbnail Image.png
Description
Autonomous Vehicles (AV) are inevitable entities in future mobility systems thatdemand safety and adaptability as two critical factors in replacing/assisting human drivers. Safety arises in defining, standardizing, quantifying, and monitoring requirements for all autonomous components. Adaptability, on the other hand, involves efficient handling of uncertainty and inconsistencies in models and data. First, I

Autonomous Vehicles (AV) are inevitable entities in future mobility systems thatdemand safety and adaptability as two critical factors in replacing/assisting human drivers. Safety arises in defining, standardizing, quantifying, and monitoring requirements for all autonomous components. Adaptability, on the other hand, involves efficient handling of uncertainty and inconsistencies in models and data. First, I address safety by presenting a search-based test-case generation framework that can be used in training and testing deep-learning components of AV. Next, to address adaptability, I propose a framework based on multi-valued linear temporal logic syntax and semantics that allows autonomous agents to perform model-checking on systems with uncertainties. The search-based test-case generation framework provides safety assurance guarantees through formalizing and monitoring Responsibility Sensitive Safety (RSS) rules. I use the RSS rules in signal temporal logic as qualification specifications for monitoring and screening the quality of generated test-drive scenarios. Furthermore, to extend the existing temporal-based formal languages’ expressivity, I propose a new spatio-temporal perception logic that enables formalizing qualification specifications for perception systems. All-in-one, my test-generation framework can be used for reasoning about the quality of perception, prediction, and decision-making components in AV. Finally, my efforts resulted in publicly available software. One is an offline monitoring algorithm based on the proposed logic to reason about the quality of perception systems. The other is an optimal planner (model checker) that accepts mission specifications and model descriptions in the form of multi-valued logic and multi-valued sets, respectively. My monitoring framework is distributed with the publicly available S-TaLiRo and Sim-ATAV tools.
ContributorsHekmatnejad, Mohammad (Author) / Fainekos, Georgios (Thesis advisor) / Deshmukh, Jyotirmoy V (Committee member) / Karam, Lina (Committee member) / Pedrielli, Giulia (Committee member) / Shrivastava, Aviral (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161806-Thumbnail Image.png
Description
Autonomous Vehicles (AVs) have the potential to significantly evolve transportation. AVs are expected to make transportation safer by avoiding accidents that happen due to human errors. When AVs become connected, they can exchange information with the infrastructure or other Connected Autonomous Vehicles (CAVs) to efficiently plan their future motion and

Autonomous Vehicles (AVs) have the potential to significantly evolve transportation. AVs are expected to make transportation safer by avoiding accidents that happen due to human errors. When AVs become connected, they can exchange information with the infrastructure or other Connected Autonomous Vehicles (CAVs) to efficiently plan their future motion and therefore, increase the road throughput and reduce energy consumption. Cooperative algorithms for CAVs will not be deployed in real life unless they are proved to be safe, robust, and resilient to different failure models. Since intersections are crucial areas where most accidents happen, this dissertation first focuses on making existing intersection management algorithms safe and resilient against network and computation time, bounded model mismatches and external disturbances, and the existence of a rogue vehicle. Then, a generic algorithm for conflict resolution and cooperation of CAVs is proposed that ensures the safety of vehicles even when other vehicles suddenly change their plan. The proposed approach can also detect deadlock situations among CAVs and resolve them through a negotiation process. A testbed consisting of 1/10th scale model CAVs is built to evaluate the proposed algorithms. In addition, a simulator is developed to perform tests at a large scale. Results from the conducted experiments indicate the robustness and resilience of proposed approaches.
ContributorsKhayatian, Mohammad (Author) / Shrivastava, Aviral (Thesis advisor) / Fainekos, Georgios (Committee member) / Ben Amor, Heni (Committee member) / Yang, Yezhou (Committee member) / Lou, Yingyan (Committee member) / Iannucci, Bob (Committee member) / Arizona State University (Publisher)
Created2021
187820-Thumbnail Image.png
Description
With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has

With the advent of new advanced analysis tools and access to related published data, it is getting more difficult for data owners to suppress private information from published data while still providing useful information. This dual problem of providing useful, accurate information and protecting it at the same time has been challenging, especially in healthcare. The data owners lack an automated resource that provides layers of protection on a published dataset with validated statistical values for usability. Differential privacy (DP) has gained a lot of attention in the past few years as a solution to the above-mentioned dual problem. DP is defined as a statistical anonymity model that can protect the data from adversarial observation while still providing intended usage. This dissertation introduces a novel DP protection mechanism called Inexact Data Cloning (IDC), which simultaneously protects and preserves information in published data while conveying source data intent. IDC preserves the privacy of the records by converting the raw data records into clonesets. The clonesets then pass through a classifier that removes potential compromising clonesets, filtering only good inexact cloneset. The mechanism of IDC is dependent on a set of privacy protection metrics called differential privacy protection metrics (DPPM), which represents the overall protection level. IDC uses two novel performance values, differential privacy protection score (DPPS) and clone classifier selection percentage (CCSP), to estimate the privacy level of protected data. In support of using IDC as a viable data security product, a software tool chain prototype, differential privacy protection architecture (DPPA), was developed to utilize the IDC. DPPA used the engineering security mechanism of IDC. DPPA is a hub which facilitates a market for data DP security mechanisms. DPPA works by incorporating standalone IDC mechanisms and provides automation, IDC protected published datasets and statistically verified IDC dataset diagnostic report. DPPA is currently doing functional, and operational benchmark processes that quantifies the DP protection of a given published dataset. The DPPA tool was recently used to test a couple of health datasets. The test results further validate the IDC mechanism as being feasible.
Contributorsthomas, zelpha (Author) / Bliss, Daniel W (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Banerjee, Ayan (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2023
157060-Thumbnail Image.png
Description
Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with

Automated driving systems are in an intensive research and development stage, and the companies developing these systems are targeting to deploy them on public roads in a very near future. Guaranteeing safe operation of these systems is crucial as they are planned to carry passengers and share the road with other vehicles and pedestrians. Yet, there is no agreed-upon approach on how and in what detail those systems should be tested. Different organizations have different testing approaches, and one common approach is to combine simulation-based testing with real-world driving.

One of the expectations from fully-automated vehicles is never to cause an accident. However, an automated vehicle may not be able to avoid all collisions, e.g., the collisions caused by other road occupants. Hence, it is important for the system designers to understand the boundary case scenarios where an autonomous vehicle can no longer avoid a collision. Besides safety, there are other expectations from automated vehicles such as comfortable driving and minimal fuel consumption. All safety and functional expectations from an automated driving system should be captured with a set of system requirements. It is challenging to create requirements that are unambiguous and usable for the design, testing, and evaluation of automated driving systems. Another challenge is to define useful metrics for assessing the testing quality because in general, it is impossible to test every possible scenario.

The goal of this dissertation is to formalize the theory for testing automated vehicles. Various methods for automatic test generation for automated-driving systems in simulation environments are presented and compared. The contributions presented in this dissertation include (i) new metrics that can be used to discover the boundary cases between safe and unsafe driving conditions, (ii) a new approach that combines combinatorial testing and optimization-guided test generation methods, (iii) approaches that utilize global optimization methods and random exploration to generate critical vehicle and pedestrian trajectories for testing purposes, (iv) a publicly-available simulation-based automated vehicle testing framework that enables application of the existing testing approaches in the literature, including the new approaches presented in this dissertation.
ContributorsTuncali, Cumhur Erkan (Author) / Fainekos, Georgios (Thesis advisor) / Ben Amor, Heni (Committee member) / Kapinski, James (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2019
155071-Thumbnail Image.png
Description
Sports activities have been a cornerstone in the evolution of humankind through the ages from the ancient Roman empire to the Olympics in the 21st century. These activities have been used as a benchmark to evaluate the how humans have progressed through the sands of time. In the 21st century,

Sports activities have been a cornerstone in the evolution of humankind through the ages from the ancient Roman empire to the Olympics in the 21st century. These activities have been used as a benchmark to evaluate the how humans have progressed through the sands of time. In the 21st century, machines along with the help of powerful computing and relatively new computing paradigms have made a good case for taking up the mantle. Even though machines have been able to perform complex tasks and maneuvers, they have struggled to match the dexterity, coordination, manipulability and acuteness displayed by humans. Bi-manual tasks are more complex and bring in additional variables like coordination into the task making it harder to evaluate.

A task capable of demonstrating the above skillset would be a good measure of the progress in the field of robotic technology. Therefore a dual armed robot has been built and taught to handle the ball and make the basket successfully thus demonstrating the capability of using both arms. A combination of machine learning techniques, Reinforcement learning, and Imitation learning has been used along with advanced optimization algorithms to accomplish the task.
ContributorsKalige, Nikhil (Author) / Amor, Heni Ben (Thesis advisor) / Shrivastava, Aviral (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2016
155240-Thumbnail Image.png
Description
Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize

Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have a large impact on the worst-case performance due to expensive off- chip memory accesses involved in cache miss handling. In this regard, software-controlled scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a raw SRAM, controlled only by executing data movement instructions explicitly at runtime, and such explicit control facilitates static analyses to obtain safe and tight upper bounds of WCETs. SPM management techniques, used in compilers targeting an SPM-based processor, determine how to use a given SPM space by deciding where to insert data movement instructions and what operations to perform at those program locations. This dissertation presents several management techniques for program code and stack data, which aim to optimize the WCETs of a given program. The proposed code management techniques include optimal allocation algorithms and a polynomial-time heuristic for allocating functions to the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for splitting functions into smaller partitions. The proposed stack data management technique, on the other hand, finds an optimal set of program locations to evict and restore stack frames to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evaluation, the WCETs of various benchmarks including real-world automotive applications are statically calculated for SPMs and caches in several different memory configurations.
ContributorsKim, Yooseong (Author) / Shrivastava, Aviral (Thesis advisor) / Broman, David (Committee member) / Fainekos, Georgios (Committee member) / Wu, Carole-Jean (Committee member) / Arizona State University (Publisher)
Created2017
157771-Thumbnail Image.png
Description
At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining

At modern-day intersections, traffic lights and stop signs assist human drivers to cross the intersection safely. Traffic congestion in urban road networks is a costly problem that affects all major cities. Efficiently operating intersections is largely dependent on accuracy and precision of human drivers, engendering a lingering uncertainty of attaining safety and high throughput. To improve the efficiency of the existing traffic network and mitigate the effects of human error in the intersection, many studies have proposed autonomous, intelligent transportation systems. These studies often involve utilizing connected autonomous vehicles, implementing a supervisory system, or both. Implementing a supervisory system is relatively more popular due to the security concerns of vehicle-to-vehicle communication. Even though supervisory systems are a step in the right direction for security, many supervisory systems’ safe operation solely relies on the promise of connected data being correct, making system reliability difficult to achieve. To increase fault-tolerance and decrease the effects of position uncertainty, this thesis proposes the Reliable and Robust Intersection Manager, a supervisory system that uses a separate surveillance system to dependably detect vehicles present in the intersection in order to create data redundancy for more accurate scheduling of connected autonomous vehicles. Adding the Surveillance System ensures that the temporal safety buffers between arrival times of connected autonomous vehicles are maintained. This guarantees that connected autonomous vehicles can traverse the intersection safely in the event of large vehicle controller error, a single rogue car entering the intersection, or a sybil attack. To test the proposed system given these fault-models, MATLAB® was used to create simulations in order to observe the functionality of R2IM compared to the state-of-the-art supervisory system, Robust Intersection Manager. Though R2IM is less efficient than the Robust Intersection Manager, it considers more fault models. The Robust Intersection Manager failed to maintain safety in the event of large vehicle controller errors and rogue cars, however R2IM resulted in zero collisions.
ContributorsDedinsky, Rachel (Author) / Shrivastava, Aviral (Thesis advisor) / Sen, Arunabha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2019