Matching Items (154)
Filtering by

Clear all filters

187693-Thumbnail Image.png
Description
Simultaneous localization and mapping (SLAM) has traditionally relied on low-level geometric or optical features. However, these features-based SLAM methods often struggle with feature-less or repetitive scenes. Additionally, low-level features may not provide sufficient information for robot navigation and manipulation, leaving robots without a complete understanding of the 3D spatial world.

Simultaneous localization and mapping (SLAM) has traditionally relied on low-level geometric or optical features. However, these features-based SLAM methods often struggle with feature-less or repetitive scenes. Additionally, low-level features may not provide sufficient information for robot navigation and manipulation, leaving robots without a complete understanding of the 3D spatial world. Advanced information is necessary to address these limitations. Fortunately, recent developments in learning-based 3D reconstruction allow robots to not only detect semantic meanings, but also recognize the 3D structure of objects from a few images. By combining this 3D structural information, SLAM can be improved from a low-level approach to a structure-aware approach. This work propose a novel approach for multi-view 3D reconstruction using recurrent transformer. This approach allows robots to accumulate information from multiple views and encode them into a compact latent space. The resulting latent representations are then decoded to produce 3D structural landmarks, which can be used to improve robot localization and mapping.
ContributorsHuang, Chi-Yao (Author) / Yang, Yezhou (Thesis advisor) / Turaga, Pavan (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
189210-Thumbnail Image.png
Description
Navigation and mapping in GPS-denied environments, such as coal mines ordilapidated buildings filled with smog or particulate matter, pose a significant challenge due to the limitations of conventional LiDAR or vision systems. Therefore there exists a need for a navigation algorithm and mapping strategy which do not use vision systems but are still

Navigation and mapping in GPS-denied environments, such as coal mines ordilapidated buildings filled with smog or particulate matter, pose a significant challenge due to the limitations of conventional LiDAR or vision systems. Therefore there exists a need for a navigation algorithm and mapping strategy which do not use vision systems but are still able to explore and map the environment. The map can further be used by first responders and cave explorers to access the environments. This thesis presents the design of a collision-resilient Unmanned Aerial Vehicle (UAV), XPLORER that utilizes a novel navigation algorithm for exploration and simultaneous mapping of the environment. The real-time navigation algorithm uses the onboard Inertial Measurement Units (IMUs) and arm bending angles for contact estimation and employs an Explore and Exploit strategy. Additionally, the quadrotor design is discussed, highlighting its improved stability over the previous design. The generated map of the environment can be utilized by autonomous vehicles to navigate the environment. The navigation algorithm is validated in multiple real-time experiments in different scenarios consisting of concave and convex corners and circular objects. Furthermore, the developed mapping framework can serve as an auxiliary input for map generation along with conventional LiDAR or vision-based mapping algorithms. Both the navigation and mapping algorithms are designed to be modular, making them compatible with conventional UAVs also. This research contributes to the development of navigation and mapping techniques for GPS-denied environments, enabling safer and more efficient exploration of challenging territories.
ContributorsPandian Saravanakumaran, Aravind Adhith (Author) / Zhang, Wenlong (Thesis advisor) / Das, Jnaneshwar (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2023
187805-Thumbnail Image.png
Description
In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for exoskeletons have ranged from devices as simple spring-loaded systems to using sensors such as electromyography (EMG). Despite EMGs being very common, force sensing resistors (FSRs) can be used instead. There are multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for either medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This thesis is a continuation of my ASU Barrett honors thesis, Upper-Extremity Exoskeleton. While working on my honors thesis, I helped develop a design for an upper extremity exoskeleton based on the Wilmer orthosis design for Mayo Clinic. Building upon the design of an orthosis, for the master’s thesis, I developed an FSR control system that is designed using a Wheatstone bridge circuit that can provide a clean reliable signal as compared to the current EMG setup.
ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis advisor) / Aukes, Daniel (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2023
187806-Thumbnail Image.png
Description
This thesis presents a study on the user adaptive variable impedance control of a wearable ankle robot for robot-aided rehabilitation with a primary focus on enhancing accuracy and speed. The controller adjusts the impedance parameters based on the user's kinematic data to provide personalized assistance. Bayesian optimization is employed to

This thesis presents a study on the user adaptive variable impedance control of a wearable ankle robot for robot-aided rehabilitation with a primary focus on enhancing accuracy and speed. The controller adjusts the impedance parameters based on the user's kinematic data to provide personalized assistance. Bayesian optimization is employed to minimize an objective function formulated from the user's kinematic data to adapt the impedance parameters per user, thereby enhancing speed and accuracy. Gaussian process is used as a surrogate model for optimization to account for uncertainties and outliers inherent to human experiments. Student-t process based outlier detection is utilized to enhance optimization robustness and accuracy. The efficacy of the optimization is evaluated based on measures of speed, accuracy, and effort, and compared with an untuned variable impedance controller during 2D curved trajectory following tasks. User effort was measured based on muscle activation data from the tibialis anterior, peroneus longus, soleus, and gastrocnemius muscles. The optimized controller was evaluated on 15 healthy subjects and demonstrated an average increase in speed of 9.85% and a decrease in deviation from the ideal trajectory of 7.57%, compared to an unoptimized variable impedance controller. The strategy also reduced the time to complete tasks by 6.57%, while maintaining a similar level of user effort.
ContributorsManoharan, Gautham (Author) / Lee, Hyunglae (Thesis advisor) / Berman, Spring (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2023
187764-Thumbnail Image.png
Description
This thesis considers the problem of multi-robot task allocation with inter-agent distance constraints, e.g., due to the presence of physical tethers or communication requirements, that must be satisfied at all times. Specifically, three optimization-based formulations are explored: (i) a “Naive Method” that leverages the classical multiple traveling salesman (mTSP) formulation

This thesis considers the problem of multi-robot task allocation with inter-agent distance constraints, e.g., due to the presence of physical tethers or communication requirements, that must be satisfied at all times. Specifically, three optimization-based formulations are explored: (i) a “Naive Method” that leverages the classical multiple traveling salesman (mTSP) formulation to find solutions that are then filtered out when the inter-agent distance constraints are violated, (ii) a “Timed Method” thatconstructs a new formulation that explicitly accounts for robot timings, including the inter-agent distance constraints, and (iii) an “Improved Naive Method” that reformulates the Naive Method with a novel graph-traversal algorithm to produce tours that, unlike the Naive Method, allow backtracking and also introduces a more systematic approach to filter out solutions that violate inter-agent distance constraints. The effectiveness of the approaches to return task allocations that satisfy the constraints are demonstrated and compared in simulation experiments.
ContributorsGoodwin, Walter Alexander (Author) / Yong, Sze Zheng (Thesis advisor) / Grewal, Anoop (Thesis advisor) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2023
189263-Thumbnail Image.png
Description
In this work, I propose to bridge the gap between human users and adaptive control of robotic systems. The goal is to enable robots to consider user feedback and adjust their behaviors. A critical challenge with designing such systems is that users are often non-experts, with limited knowledge about

In this work, I propose to bridge the gap between human users and adaptive control of robotic systems. The goal is to enable robots to consider user feedback and adjust their behaviors. A critical challenge with designing such systems is that users are often non-experts, with limited knowledge about the robot's hardware and dynamics. In the domain of human-robot interaction, there exist different modalities of conveying information regarding the desired behavior of the robot, most commonly used are demonstrations, and preferences. While it is challenging for non-experts to provide demonstrations of robot behavior, works that consider preferences expressed as trajectory rankings lead to users providing noisy and possibly conflicting information, leading to slow adaptation or system failures. The end user can be expected to be familiar with the dynamics and how they relate to their desired objectives through repeated interactions with the system. However, due to inadequate knowledge about the system dynamics, it is expected that the user would find it challenging to provide feedback on all dimension's of the system's behavior at all times. Thus, the key innovation of this work is to enable users to provide partial instead of completely specified preferences as with traditional methods that learn from user preferences. In particular, I consider partial preferences in the form of preferences over plant dynamic parameters, for which I propose Adaptive User Control (AUC) of robotic systems. I leverage the correlations between the observed and hidden parameter preferences to deal with incompleteness. I use a sparse Gaussian Process Latent Variable Model formulation to learn hidden variables that represent the relationships between the observed and hidden preferences over the system parameters. This model is trained using Stochastic Variational Inference with a distributed loss formulation. I evaluate AUC in a custom drone-swarm environment and several domains from DeepMind control suite. I compare AUC with the state-of-the-art preference-based reinforcement learning methods that are utilized with user preferences. Results show that AUC outperforms the baselines substantially in terms of sample and feedback complexity.
ContributorsBiswas, Upasana (Author) / Zhang, Yu (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Berman, Spring (Committee member) / Liu, Lantao (Committee member) / Arizona State University (Publisher)
Created2023
189299-Thumbnail Image.png
Description
Multiple robotic arms collaboration is to control multiple robotic arms to collaborate with each other to work on the same task. During the collaboration, theagent is required to avoid all possible collisions between each part of the robotic arms. Thus, incentivizing collaboration and preventing collisions are the two principles which are followed

Multiple robotic arms collaboration is to control multiple robotic arms to collaborate with each other to work on the same task. During the collaboration, theagent is required to avoid all possible collisions between each part of the robotic arms. Thus, incentivizing collaboration and preventing collisions are the two principles which are followed by the agent during the training process. Nowadays, more and more applications, both in industry and daily lives, require at least two arms, instead of requiring only a single arm. A dual-arm robot satisfies much more needs of different types of tasks, such as folding clothes at home, making a hamburger in a grill or picking and placing a product in a warehouse. The applications done in this paper are all about object pushing. This thesis focuses on how to train the agent to learn pushing an object away as far as possible. Reinforcement Learning (RL), which is a type of Machine Learning (ML), is then utilized in this paper to train the agent to generate optimal actions. Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER) are the two RL methods used in this thesis.
ContributorsLin, Steve (Author) / Ben Amor, Hani (Thesis advisor) / Redkar, Sangram (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2023
189307-Thumbnail Image.png
Description
Acrobatic maneuvers of quadrotors present unique challenges concerning trajectorygeneration, control, and execution. Specifically, the flip maneuver requires dynamically feasible trajectories and precise control. Various factors, including rotor dynamics, thrust allocation, and control strategies, influence the successful execution of flips. This research introduces an approach for tracking optimal trajectories to execute flip maneuvers while ensuring

Acrobatic maneuvers of quadrotors present unique challenges concerning trajectorygeneration, control, and execution. Specifically, the flip maneuver requires dynamically feasible trajectories and precise control. Various factors, including rotor dynamics, thrust allocation, and control strategies, influence the successful execution of flips. This research introduces an approach for tracking optimal trajectories to execute flip maneuvers while ensuring system stability autonomously. Model Predictive Control (MPC) designs the controller, enabling the quadrotor to plan and execute optimal trajectories in real-time, accounting for dynamic constraints and environmental factors. The utilization of predictive models enables the quadrotor to anticipate and adapt to changes during aggressive maneuvers. Simulation-based evaluations were conducted in the ROS and Gazebo environments. These evaluations provide valuable insights into the quadrotor’s behavior, response time, and tracking accuracy. Additionally, real-time flight experiments utilizing state- of-the-art flight controllers, such as the PixHawk 4, and companion computers, like the Hardkernel Odroid, validate the effectiveness of the proposed control algorithms in practical scenarios. The conducted experiments also demonstrate the successful execution of the proposed approach. This research’s outcomes contribute to quadrotor technology’s advancement, particularly in acrobatic maneuverability. This opens up possibilities for executing maneuvers with precise timing, such as slingshot probe releases during flips. Moreover, this research demonstrates the efficacy of MPC controllers in achieving autonomous probe throws within no-fly zone environments while maintaining an accurate desired range. Field application of this research includes probe deployment into volcanic plumes or challenging-to-access rocky fault scarps, and imaging of sites of interest. along flight paths through rolling or pitching maneuvers of the quadrotor, to use sensorsuch as cameras or spectrometers on the quadrotor belly.
Contributorsjain, saransh (Author) / Das, Jnaneshwar (Thesis advisor) / Zhang, Wenlong (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2023
187325-Thumbnail Image.png
Description
SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want

SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want to navigate autonomously. The description might make it seem like a chicken and egg problem, but numerous methods have been proposed to tackle SLAM. Before the rise in the popularity of deep learning and AI (Artificial Intelligence), most existing algorithms involved traditional hard-coded algorithms that would receive and process sensor information and convert it into some solvable sensor-agnostic problem. The challenge for these sorts of methods is having to tackle dynamic environments. The more variety in the environment, the poorer the results. Also due to the increase in computational power and the capability of deep learning-based image processing, visual SLAM has become extremely viable and maybe even preferable to traditional SLAM algorithms. In this research, a deep learning-based solution to the SLAM problem is proposed, specifically monocular visual SLAM which is solving the problem of SLAM purely with a singular camera as the input, and the model is tested on the KITTI (Karlsruhe Institute of Technology & Toyota Technological Institute) odometry dataset.
ContributorsRupaakula, Krishna Sandeep (Author) / Bansal, Ajay (Thesis advisor) / Baron, Tyler (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2023
187407-Thumbnail Image.png
Description
Foldable robots have gained popularity in recent years due to their versatility and portability. However, the use of composite hinges in these systems has posed challenges in terms of manufacturing complexity and cost. Historically, single material robots were very limited due to the fact that both the link and the

Foldable robots have gained popularity in recent years due to their versatility and portability. However, the use of composite hinges in these systems has posed challenges in terms of manufacturing complexity and cost. Historically, single material robots were very limited due to the fact that both the link and the hinge are made with the same material and striking a balance with stiffness of the link and flexibility of the hinge has been very difficult. Hinges would undergo fatigue within hundreds of cycles and show non-linear wear and physical properties. This research proposes an innovative approach to simplify foldable robotics by replacing composite hinges with single material flexure hinges. The proposed hinges are manufactured using a CO2 laser cutter and are designed to enhance performance and reduce costs over previous single-layer-hinges. A mathematical model has been developed to predict the behavior of the hinges and tune them to the desired requirements. Experimental results show that the proposed hinges offer improved flexibility and durability compared to single-layer hinges, while reducing the manufacturing cost and complexity associated with multi-layer hinges. This research contributes to the advancement of foldable robotics by offering a simplified and cost-effective solution that can foster innovation in various applications.
ContributorsKanchan, Viraj (Author) / Aukes, Daniel (Thesis advisor) / Redkan, Sangram (Committee member) / Sugar, Thmas (Committee member) / Arizona State University (Publisher)
Created2023