Matching Items (812)
Filtering by

Clear all filters

150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

ContributorsTurner, Natalie Ann (Co-author) / Kuta, Tiffany (Co-author) / Jones, Cassity (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147998-Thumbnail Image.png
Description

For this Creative Project, I decided to explore the elements that set novellas apart from other genres and then experiment writing in the form. In doing so, I took into account three main categories: Plot Structure, Character Development, Style/Format, and then used my findings to write 45 pages of a

For this Creative Project, I decided to explore the elements that set novellas apart from other genres and then experiment writing in the form. In doing so, I took into account three main categories: Plot Structure, Character Development, Style/Format, and then used my findings to write 45 pages of a novella titled Emmy and Me.

ContributorsBingham, Roxanne Marie (Author) / Irish, Jennifer (Thesis director) / Danielson, Jonathan (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Filmmakers seek to create story pieces that are visually beautiful and engage the full attention of their audience. They typically abide by a 3-step process moving through pre-production, production, and post-production. Within each step, there are a series of tasks that need to be accomplished in order to reach the

Filmmakers seek to create story pieces that are visually beautiful and engage the full attention of their audience. They typically abide by a 3-step process moving through pre-production, production, and post-production. Within each step, there are a series of tasks that need to be accomplished in order to reach the completed film. A successful film requires careful planning and strategy in pre-production, timely and decisive execution in production, and minimal unforeseen retouching in post-production.<br/><br/>Even though filmmakers have continued to follow the same formula throughout the decades, the filmmaking process has remained largely inefficient. It is extremely common for pre-production planning to be undercut, for production filming to run far too long, and for post-production VFX and editing to send the project over budget. These instances can cause major issues as the project is being finalized. In many scenarios portions of the project need to be reshot, the box office revenue isn’t enough to make up for extensive VFX retouching, or the project may never even come to fruition. <br/><br/>The reason for this recurring theme of films being over budget and out of time is quite simply that technology has made filmmakers lazy. “Fix it in post” is a disgustingly common phrase used in the film industry. It describes the utter abuse of computer retouching in the post-production phase of filmmaking. Despite working in an industry that seeks to entertain the human eye, filmmakers have become blind to all of the small mistakes that could cost them hundreds of hours and millions of dollars in the long run.

ContributorsKlewicki, Tallee Jo (Author) / Shin, Dosun (Thesis director) / Eliciana, Nascimento (Committee member) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147924-Thumbnail Image.png
Description

My project is designed to provide art education to incarcerated youth in Arizona. This project will address two current issues in Arizona; the underfunding of art programs and high rates of incarceration. As of 2021, there are no state-funded art programs in Arizona. Arizona is tied with Texas for the

My project is designed to provide art education to incarcerated youth in Arizona. This project will address two current issues in Arizona; the underfunding of art programs and high rates of incarceration. As of 2021, there are no state-funded art programs in Arizona. Arizona is tied with Texas for the eighth highest rate of incarceration in the country. In Arizona, 750 out of every 100,000 people are incarcerated. This project is an art course for incarcerated youth. The project includes a packet detailing the course content and assignment details, a class syllabus, a course flyer, and a certificate of completion. The course is intended to be taught at the Adobe Mountain School facility. The course is designed so that it can be implemented in other facilities in the future. The class will be taught by volunteers with a background in studio art, design, or art education. Each student will receive a course packet that they can use to keep track of information and assignments. Instructors will use the course packet to teach the class. The course focuses on drawing with charcoal and oil pastel, which will build a foundation in drawing skills. The course covers a twelve-week semester. The course content packet includes a week-by-week breakdown of the teaching material and project descriptions. The course consists of two main projects and preparatory work. The preparatory work includes vocabulary terms, art concepts, drawing guides, brainstorming activities, and drawing activities. The two main prompts are designed for students to explore the materials and to encourage self-reflection. The class is curated so that students can create art in a low-risk, non-judgemental environment. The course will also focus on establishing problem-solving and critical thinking skills through engaging activities.

ContributorsSheppard, Eve (Author) / Cornelia, Wells (Thesis director) / Jennifer, Nelson (Committee member) / School of Art (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsKuta, Tiffany T (Co-author) / Jones, Cassity (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsJones, Cassity Rachelle (Co-author) / Kuta, Tiffany (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148217-Thumbnail Image.png
Description

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde

The COVID-19 Pandemic has provided a challenge for educators to create virtual learning materials that are engaging and impactful during times of high stress and isolation. In this creative project, I explore the variety of virtual tools and web applications from Esri by creating a Story Map on the Verde River Watershed. This Story Map is intended for an audience of students in late middle school and early high school but can be a resource to teachers for a wider age range. The integration of interactive technology and virtual tools in educational practices is likely to continue past the immediate circumstances of the COVID-19 pandemic. The purpose of this Story Map is to showcase one of the many uses for geospatial web applications beyond the immediate realm of GIS.

ContributorsTueller, Margaret (Author) / Frazier, Amy (Thesis director) / Dorn, Ron (Committee member) / School of Geographical Sciences and Urban Planning (Contributor, Contributor, Contributor) / Division of Teacher Preparation (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150311-Thumbnail Image.png
Description
HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy

HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy (MBE) on HgCdTe heterostructures was evaluated. The as-deposited CdTe passivation layers were polycrystalline and columnar. The CdTe grains were larger and more irregular when deposited by HWE, whereas those deposited by MBE were generally well-textured with mostly vertical grain boundaries. Observations and measurements using several TEM techniques showed that the CdTe/HgCdTe interface became considerably more abrupt after annealing, and the crystallinity of the CdTe layer was also improved. The microstructure and compositional profiles of CdTe(211)B/ZnTe/Si(211) heterostructures grown by MBE was investigated. Many inclined {111}-type stacking faults were present throughout the thin ZnTe layer, terminating near the point of initiation of CdTe growth. A rotation angle of about 3.5° was observed between lattice planes of the Si substrate and the final CdTe epilayer. Lattice parameter measurement and elemental profiles indicated that some local intermixing of Zn and Cd had taken place. The average widths of the ZnTe layer and the (Cd, Zn)Te transition region were found to be roughly 6.5 nm and 3.5 nm, respectively. Initial observations of CdTe(211)B/GaAs(211) heterostructures indicated much reduced defect densities near the vicinity of the substrate and within the CdTe epilayers. HgCdTe epilayers grown on CdTe(211)B/GaAs(211) composite substrate were generally of high quality, despite the presence of precipitates at the HgCdTe/CdTe interface. The microstructure of HgCdSe thin films grown by MBE on ZnTe/Si(112) and GaSb(112) substrates were investigated. The quality of the HgCdSe growth was dependent on the growth temperature and materials flux, independent of the substrate. The materials grown at 100°C were generally of high quality, while those grown at 140°C had {111}-type stacking defects and high dislocation densities. For epitaxial growth of HgCdSe on GaSb substrates, better preparation of the GaSb buffer layer will be essential in order to ensure that high-quality HgCdSe can be grown.
ContributorsZhao, Wenfeng (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha (Committee member) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Treacy, Michael J. (Committee member) / Arizona State University (Publisher)
Created2011