Matching Items (2)
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150815-Thumbnail Image.png
Description
When ferrite materials are used in antenna designs, they introduce some interesting and unique performance characteristics. One of the attractive features, for example, is the ability to reconfigure the center frequency of the antenna. In addition, ferrite materials also introduce a number of challenges in the modeling and simulation of

When ferrite materials are used in antenna designs, they introduce some interesting and unique performance characteristics. One of the attractive features, for example, is the ability to reconfigure the center frequency of the antenna. In addition, ferrite materials also introduce a number of challenges in the modeling and simulation of such antennas. In order for the ferrite material to be useful in an antenna design, it usually is subjected to an external magnetic field. This field induces the internal magnetic field inside the ferrite material. The internal field plays a pivotal role in the radiation characteristics of the antenna. Thus, from the numerical point of view, accurate computation of this field is critical to the overall accuracy of the analysis. Usually the internal field is non-uniform and its computation is often a rather complex and non-trivial task. Therefore, to facilitate the modeling, simplifying assumptions, which introduce some kind of averaging, are often made. In this study, ferrite-loaded cavity-backed slot antennas are used to demonstrate that averaging procedures can lead to very unsatisfactory results. For instance, it is common practice to assume that the external field is uniform by averaging its distribution. One of the pivotal points in this study is the demonstration that the external magnetic field plays a very significant role and should be included in the modeling without averaging, if the accurate results are to be attained. Results presented in this study clearly support this argument. A procedure which avoids such averaging is presented and verified by comparing simulations with measurements. In contrast to the previous formulations, the modeling methodology developed in this dissertation leads to accurate results which compare very well with measurements for both uniform and non-uniform field distributions. The utility of this methodology is especially evident for the case when the magnetic field is severely non-uniform.
ContributorsKononov, Victor G (Author) / Balanis, Constantine A. (Thesis advisor) / Pan, George (Committee member) / Rajan, Subramaniam D. (Committee member) / Aberle, James T. (Committee member) / Arizona State University (Publisher)
Created2012