Matching Items (1,210)
Filtering by

Clear all filters

168293-Thumbnail Image.png
Description
Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of

Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of edge intelligence, deep learning and network management. The first problem explores the learning of generative models in edge learning setting. Since the learning tasks in similar environments share model similarity, it is plausible to leverage pre-trained generative models from other edge nodes. Appealing to optimal transport theory tailored towards Wasserstein-1 generative adversarial networks, this part aims to develop a framework which systematically optimizes the generative model learning performance using local data at the edge node while exploiting the adaptive coalescence of pre-trained generative models from other nodes. In the second part, a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data, is considered. The unreliable nature of wireless connectivity, togetherwith the constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Therefore, a Stochastic Gradient Descent based bandlimited coordinate descent algorithm is designed for such settings. The third part explores the adaptive traffic engineering algorithms in a dynamic network environment. The ages of traffic measurements exhibit significant variation due to asynchronization and random communication delays between routers and controllers. Inspired by the software defined networking architecture, a controller-assisted distributed routing scheme with recursive link weight reconfigurations, accounting for the impact of measurement ages and routing instability, is devised. The final part focuses on developing a federated learning based framework for traffic reshaping of electric vehicle (EV) charging. The absence of private EV owner information and scattered EV charging data among charging stations motivates the utilization of a federated learning approach. Federated learning algorithms are devised to minimize peak EV charging demand both spatially and temporarily, while maximizing the charging station profit.
ContributorsDedeoglu, Mehmet (Author) / Zhang, Junshan (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Yanchao (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2021
168294-Thumbnail Image.png
Description
Pushing the artificial intelligence frontier to resource-constrained edge nodes for edge intelligence is nontrivial. This dissertation provides a comprehensive study of optimization-based meta-learning algorithms to build a theoretic foundation of edge intelligence, with the focus on two topics: 1) model-based reinforcement learning (RL); 2) distributed edge learning. Under this common

Pushing the artificial intelligence frontier to resource-constrained edge nodes for edge intelligence is nontrivial. This dissertation provides a comprehensive study of optimization-based meta-learning algorithms to build a theoretic foundation of edge intelligence, with the focus on two topics: 1) model-based reinforcement learning (RL); 2) distributed edge learning. Under this common theme, this study is broadly organized into two parts. The first part studies meta-learning algorithms for model-based RL. First, the fundamental limit of model learning is explored for linear time-varying systems, using a two-step meta-learning algorithm with an episodic block model. A comprehensive non-asymptotic analysis of the sample complexity is provided, where a two-scale martingale small-ball approach is devised to address the challenges in sample correlation and small sample sizes. Next, policy learning of offline RL in general Markov decision processes is explored. To tackle the challenges therein, e.g., value overestimation and possibly poor quality of offline datasets, a model-based offline Meta-RL approach with regularized policy optimization is proposed, by learning a meta-model for task inference and a meta-policy for safe exploration of out-of-distribution state-actions. The second part investigates meta-learning algorithms for distributed edge learning. First, the general edge supervised learning is considered, where the edge node aims to quickly learn a good model with limited samples. A platform-aided collaborative learning framework is proposed to learn a model initialization via federated meta-learning across multiple nodes, which is transferred to target nodes for fine-tuning. Then, a channel gating module is introduced to select important channels of backbone networks for efficient local computation. A novel federated meta-learning approach is developed to learn meta-initializations for backbone networks and gating modules, from which a task-specific channel gated network is quickly adapted. Taking one step further, the continual edge learning is investigated in the context of online meta-learning, where each node has a sequence of online tasks. A multi-agent online meta-learning framework is developed to accelerate the task-average performance in a single node under limited communication among neighbors, through the lens of distributed online convex optimization. Building on distributed online gradient descent with gradient tracking, the optimal task-average regret is achieved at a faster rate.
ContributorsLin, Sen (Author) / Zhang, Junshan JZ (Thesis advisor) / Ying, Lei LY (Thesis advisor) / Bertsekas, Dimitri DB (Committee member) / Nedich, Angelia AN (Committee member) / Wang, Weina WW (Committee member) / Arizona State University (Publisher)
Created2021
168299-Thumbnail Image.png
Description
Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics

Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics to defense technologies and have ushered in a new era of advancements. This work presents a new and novel approach towards improving the conventional phased array systems. The Intelligent Phase Shifter (IPS) offers phase tracking and discrimination solutions that currently plague High-Frequency wireless systems. The proposed system is implemented on (CMOS) process node to better scalability and reduce the overall power dissipated. A tracking system can discern Radio Frequency (RF) Signals’ phase characteristics using a double-balanced mixer. A locally generated reference signal is then matched to the phase of the incoming receiver using a fully modular yet continuous complete 360ᵒ phase shifter that alters the phase of the local reference and matches the phase with that of an incoming RF reference. The tracking is generally two control voltages that carry In-phase and Quadrature-phase information. These control signals offer the capability of controlling similar devices when placed in an array and eliminating any ambiguity that might occur due to in-band interference.
ContributorsLakshminarasimhaiah Rajendra, Yashas (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021
168330-Thumbnail Image.png
Description
Due to the reduced fuel usage and greenhouse emission advantage, the sales of electric vehicles (EV) have risen dramatically in recent years. Generally speaking, the EVs are pursuing higher power and lighter weight, which requires higher power density for all the power electronics converters in the EVs. To design higher

Due to the reduced fuel usage and greenhouse emission advantage, the sales of electric vehicles (EV) have risen dramatically in recent years. Generally speaking, the EVs are pursuing higher power and lighter weight, which requires higher power density for all the power electronics converters in the EVs. To design higher density power converters, three key emerging power electronics technologies are investigated in this study. First, the PCB-based magnetics are beneficial for improving the power density due to their low-profile structure. However, the high winding capacitance is considered one of the significant drawbacks of PCB-based magnetics. In this study, a novel winding structure is proposed to cut down the winding capacitance by 75% with little compromise of the winding loss. Second, the synchronous rectifiers (SR) are usually utilized to improve the system efficiency and power density compared with the conventional diode bridge rectifiers for the AC/DC stage in the power converters. The SRs are desired to be turned off at current zero-crossing to generate a minimal loss. However, the precise current zero-crossing detection is very challenging in high-frequency and high-power-density converters. In this study, a high-dv/dt-immune and parameter-adaptive SR driving scheme is proposed to guarantee the zero-current switching (ZCS) of SRs in various operating conditions and improve the system efficiency by 1.23%. Finally, Gallium Nitride (GaN) semiconductors are considered less lossy than Silicon (Si) semiconductors. However, the voltage rating of the commercial GaN HEMTs is limited to 600/650 V due to the lateral structure, which is not suitable for the 800 V or higher dc-link voltage EV systems. Stacking the low-voltage rating devices is a straightforward approach to sustain higher dc-link voltage. However, unbalanced voltage sharing can occur, which can damage the low-voltage rating devices in the stack. In this study, a novel active current source gate driver is proposed to suppress the over-voltage of the stacking devices below 10% for all operating conditions without sacrificing switching speed or switching energy. The above emerging power electronics technologies are investigated thoroughly in the dissertation. The proposed approaches are practical for improving power converters’ density in future EV applications.
ContributorsZhang, Zhengda (Author) / Lei, Qin Q.L. (Thesis advisor) / Ayyanar, Raja R.A. (Committee member) / Yu, Hongbin H.Y. (Committee member) / Pal, Anamitra A.P. (Committee member) / Ranjram, Mike M.R. (Committee member) / Arizona State University (Publisher)
Created2021
168340-Thumbnail Image.png
Description
This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna

This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna is modeled and simulated in lossy media. First, the vector wave functions is solved in the fundamental mode. Next the energy flow velocity is plotted to show near-field energy distribution for both TM and TE in air and seawater environment. Finally the power relation in seawater is derived to calculate the source dipole moment and required power. In the second part, the current distribution on the antenna is derived by solving EFIE with moment of methods (MoM). Both triangle and Coifman wavelet (Coiflet) are used as basis and weight functions. Then Input impedance of the antenna is computed and results are compared with traditional sinusoid current distribution assumption. Finally the input impedance of designed antenna is computed and matching network is designed and show resonant at designed frequency. In the third part, GCPW is modeled and measured in E-band. Laboratory measurements are conducted in 75 to 84 GHz. The original system is embedded with error boxes due to misalignment and needed to be de-embedded. Then the measurement data is processed and the results is compared with raw data. In the fourth part, the horn antennas and slotted waveguide array antenna (SWA) are designed for automotive radar in 75GHz to 78GHz. The horn antennas are fabricated using 3D printing of ABS material, and electro-plating with copper. The analytic solution and HFSS simulation show good agreement with measurement.
ContributorsZhou, Sai (Author) / Pan, George (Thesis advisor) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2021
161802-Thumbnail Image.png
Description
Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State

Rapid increases in the installed amounts of Distributed Energy Resources are forcing a paradigm shift to guarantee stability, security, and economics of power distribution systems. This dissertation explores these challenges and proposes solutions to enable higher penetrations of grid-edge devices. The thesis shows that integrating Graph Signal Processing with State Estimation formulation allows accurate estimation of voltage phasors for radial feeders under low-observability conditions using traditional measurements. Furthermore, the Optimal Power Flow formulation presented in this work can reduce the solution time of a bus injection-based convex relaxation formulation, as shown through numerical results. The enhanced real-time knowledge of the system state is leveraged to develop new approaches to cyber-security of a transactive energy market by introducing a blockchain-based Electron Volt Exchange framework that includes a distributed protocol for pricing and scheduling prosumers' production/consumption while keeping constraints and bids private. The distributed algorithm prevents power theft and false data injection by comparing prosumers' reported power exchanges to models of expected power exchanges using measurements from grid sensors to estimate system state. Necessary hardware security is described and integrated into underlying grid-edge devices to verify the provenance of messages to and from these devices. These preventive measures for securing energy transactions are accompanied by additional mitigation measures to maintain voltage stability in inverter-dominated networks by expressing local control actions through Lyapunov analysis to mitigate cyber-attack and generation intermittency effects. The proposed formulation is applicable as long as the Volt-Var and Volt-Watt curves of the inverters can be represented as Lipschitz constants. Simulation results demonstrate how smart inverters can mitigate voltage oscillations throughout the distribution network. Approaches are rigorously explored and validated using a combination of real distribution networks and synthetic test cases. Finally, to overcome the scarcity of real data to test distribution systems algorithms a framework is introduced to generate synthetic distribution feeders mapped to real geospatial topologies using available OpenStreetMap data. The methods illustrate how to create synthetic feeders across the entire ZIP Code, with minimal input data for any location. These stackable scientific findings conclude with a brief discussion of physical deployment opportunities to accelerate grid modernization efforts.
ContributorsSaha, Shammya Shananda (Author) / Johnson, Nathan (Thesis advisor) / Scaglione, Anna (Thesis advisor) / Arnold, Daniel (Committee member) / Boscovic, Dragan (Committee member) / Arizona State University (Publisher)
Created2021
164535-Thumbnail Image.png
Description

Speedsolving, the art of solving twisty puzzles like the Rubik's Cube as fast as possible, has recently benefitted from the arrival of smartcubes which have special hardware for tracking the cube's face turns and transmitting them via Bluetooth. However, due to their embedded electronics, existing smartcubes cannot be used in

Speedsolving, the art of solving twisty puzzles like the Rubik's Cube as fast as possible, has recently benefitted from the arrival of smartcubes which have special hardware for tracking the cube's face turns and transmitting them via Bluetooth. However, due to their embedded electronics, existing smartcubes cannot be used in competition, reducing their utility in personal speedcubing practice. This thesis proposes a sound-based design for tracking the face turns of a standard, non-smart speedcube consisting of an audio processing receiver in software and a small physical speaker configured as a transmitter. Special attention has been given to ensuring that installing the transmitter requires only a reversible centercap replacement on the original cube. This allows the cube to benefit from smartcube features during practice, while still maintaining compliance with competition regulations. Within a controlled test environment, the software receiver perfectly detected a variety of transmitted move sequences. Furthermore, all components required for the physical transmitter were demonstrated to fit within the centercap of a Gans 356 speedcube.

ContributorsHale, Joseph (Author) / Heinrichs, Robert (Thesis director) / Li, Baoxin (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
168739-Thumbnail Image.png
Description
Visual navigation is a useful and important task for a variety of applications. As the preva­lence of robots increase, there is an increasing need for energy-­efficient navigation methods as well. Many aspects of efficient visual navigation algorithms have been implemented in the lit­erature, but there is a lack of work

Visual navigation is a useful and important task for a variety of applications. As the preva­lence of robots increase, there is an increasing need for energy-­efficient navigation methods as well. Many aspects of efficient visual navigation algorithms have been implemented in the lit­erature, but there is a lack of work on evaluation of the efficiency of the image sensors. In this thesis, two methods are evaluated: adaptive image sensor quantization for traditional camera pipelines as well as new event­-based sensors for low­-power computer vision.The first contribution in this thesis is an evaluation of performing varying levels of sen­sor linear and logarithmic quantization with the task of visual simultaneous localization and mapping (SLAM). This unconventional method can provide efficiency benefits with a trade­ off between accuracy of the task and energy-­efficiency. A new sensor quantization method, gradient­-based quantization, is introduced to improve the accuracy of the task. This method only lowers the bit level of parts of the image that are less likely to be important in the SLAM algorithm since lower bit levels signify better energy­-efficiency, but worse task accuracy. The third contribution is an evaluation of the efficiency and accuracy of event­-based camera inten­sity representations for the task of optical flow. The results of performing a learning based optical flow are provided for each of five different reconstruction methods along with ablation studies. Lastly, the challenges of an event feature­-based SLAM system are presented with re­sults demonstrating the necessity for high quality and high­ resolution event data. The work in this thesis provides studies useful for examining trade­offs for an efficient visual navigation system with traditional and event vision sensors. The results of this thesis also provide multiple directions for future work.
ContributorsChristie, Olivia Catherine (Author) / Jayasuriya, Suren (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
168630-Thumbnail Image.png
Description
As the single-junction silicon solar cell is approaching its theoretical efficiency limits, the loss from shading and resistance is gaining increasing attention. The metal grid pattern may cause an efficiency loss up to 1–3%abs (absolute percentage) depending on the grid’s materials and structure.Many attempts have been proposed to reduce the

As the single-junction silicon solar cell is approaching its theoretical efficiency limits, the loss from shading and resistance is gaining increasing attention. The metal grid pattern may cause an efficiency loss up to 1–3%abs (absolute percentage) depending on the grid’s materials and structure.Many attempts have been proposed to reduce the loss caused by the contacts and module. Among them, the monolithic solar cell, which is a solar cell with multiple string cells on the same wafer and connected in a series, presents advantages of low output current, busbar-free contact, minimized interconnection space, and ohmic loss reduction. However, this structure also introduces a lateral forward bias current through the base region, which severely degrades the cell’s performance. In addition, this interconnection in the base region has partially shunted certain solar cells in the monolithic cell, which created a mismatch between string cells. For the last few decades, researchers have used different methods such as etching trenches or enlarging the distance between the neighboring string cells to solve this problem. However, these methods were both ineffective and defective. In this work, a novel method of suppressing the lateral forward bias current is proposed. By adding a very high surface recombination to the mid-region between the string cells, the carrier density in the mid-region can be decreased close to the doping density. Thus, the resistivity in the mid-region can be increased tenfold or more. As a result, the lateral forward bias current is greatly reduced. Other methods to reduce lateral forward bias current include optimizing the width of the mid-region, shading the mid-region, reducing the base doping and base thickness which can be used to reduce the mismatch as well. Another method has been proposed to calculate the minimum efficiency loss of a monolithic cell compared to the baseline solar cell. As a result, the monolithic cell could potentially gain more advantages over the baseline solar cells with a thinner and low-doped wafer. A monolithic solar cell with innovative designs is presented in this work which shows an efficiency that is potentially higher than that of normal solar cells.
ContributorsXue, Shujian (Author) / Bowden, Studart (Thesis advisor) / Goodnick, Stephen (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2022
168677-Thumbnail Image.png
Description

This work addresses the following four problems: (i) Will a blockage occur in the near future? (ii) When will this blockage occur? (iii) What is the type of the blockage? And (iv) what is the direction of the moving blockage? The proposed solution utilizes deep neural networks (DNN) as well

This work addresses the following four problems: (i) Will a blockage occur in the near future? (ii) When will this blockage occur? (iii) What is the type of the blockage? And (iv) what is the direction of the moving blockage? The proposed solution utilizes deep neural networks (DNN) as well as non-machine learning (ML) algorithms. At the heart of the proposed method is identification of special patterns of received signal and sensory data before the blockage occurs (\textit{pre-blockage signatures}) and to infer future blockages utilizing these signatures. To evaluate the proposed approach, first real-world datasets are built for both in-band mmWave system and LiDAR-aided in mmWave systems based on the DeepSense 6G structure. In particular, for in-band mmWave system, two real-world datasets are constructed -- one for indoor scenario and the other for outdoor scenario. Then DNN models are developed to proactively predict the incoming blockages for both scenarios. For LiDAR-aided blockage prediction, a large-scale real-world dataset that includes co-existing LiDAR and mmWave communication measurements is constructed for outdoor scenarios. Then, an efficient LiDAR data denoising (static cluster removal) algorithm is designed to clear the dataset noise. Finally, a non-ML method and a DNN model that proactively predict dynamic link blockages are developed. Experiments using in-band mmWave datasets show that, the proposed approach can successfully predict the occurrence of future dynamic blockages (up to 5 s) with more than 80% accuracy (indoor scenario). Further, for the outdoor scenario with highly-mobile vehicular blockages, the proposed model can predict the exact time of the future blockage with less than 100 ms error for blockages happening within the future 600 ms. Further, our proposed method can predict the size and moving direction of the blockages. For the co-existing LiDAR and mmWave real-world dataset, our LiDAR-aided approach is shown to achieve above 95% accuracy in predicting blockages occurring within 100 ms and more than 80% prediction accuracy for blockages occurring within one second. Further, for the outdoor scenario with highly-mobile vehicular blockages, the proposed model can predict the exact time of the future blockage with less than 150 ms error for blockages happening within one second. In addition, our method achieves above 92% accuracy to classify the type of blockages and above 90% accuracy predicting the blockage moving direction. The proposed solutions can potentially provide an order of magnitude saving in the network latency, thereby highlighting a promising approach for addressing the blockage challenges in mmWave/sub-THz networks.

ContributorsWu, Shunyao (Author) / Chakrabarti, Chaitali CC (Thesis advisor) / Alkhateeb, Ahmed AA (Committee member) / Bliss, Daniel DB (Committee member) / Papandreou-Suppappola, Antonia AP (Committee member) / Arizona State University (Publisher)
Created2022