Matching Items (83)
Filtering by

Clear all filters

156134-Thumbnail Image.png
Description
In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited

In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4×10–6 -cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of ±0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13˚C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.
ContributorsWang, Laidong (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2018
156416-Thumbnail Image.png
Description
ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration

ABSTRACT

Autonomous smart windows may be integrated with a stack of active components, such as electrochromic devices, to modulate the opacity/transparency by an applied voltage. Here, we describe the processing and performance of two classes of visibly-transparent photovoltaic materials, namely inorganic (ZnO thin film) and fully organic (PCDTBT:PC70BM), for integration with electrochromic stacks.

Sputtered ZnO (2% Mn) films on ITO, with transparency in the visible range, were used to fabricate metal-semiconductor (MS), metal-insulator-semiconductor (MIS), and p-i-n heterojunction devices, and their photovoltaic conversion under ultraviolet (UV) illumination was evaluated with and without oxygen plasma-treated surface electrodes (Au, Ag, Al, and Ti/Ag). The MS Schottky parameters were fitted against the generalized Bardeen model to obtain the density of interface states (Dit ≈ 8.0×1011 eV−1cm−2) and neutral level (Eo ≈ -5.2 eV). These devices exhibited photoconductive behavior at λ = 365 nm, and low-noise Ag-ZnO detectors exhibited responsivity (R) and photoconductive gain (G) of 1.93×10−4 A/W and 6.57×10−4, respectively. Confirmed via matched-pair analysis, post-metallization, oxygen plasma treatment of Ag and Ti/Ag electrodes resulted in increased Schottky barrier heights, which maximized with a 2 nm SiO2 electron blocking layer (EBL), coupled with the suppression of recombination at the metal/semiconductor interface and blocking of majority carriers. For interdigitated devices under monochromatic UV-C illumination, the open-circuit voltage (Voc) was 1.2 V and short circuit current density (Jsc), due to minority carrier tunneling, was 0.68 mA/cm2.

A fully organic bulk heterojunction photovoltaic device, composed of poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyli2’,1’,3’-benzothiadiazole)]:phenyl-C71-butyric-acidmethyl (PCDTBT:PC70BM), with corresponding electron and hole transport layers, i.e., LiF with Al contact and conducting
on-conducting (nc) PEDOT:PSS (with ITO/PET or Ag nanowire/PDMS contacts; the illuminating side), respectively, was developed. The PCDTBT/PC70BM/PEDOT:PSS(nc)/ITO/PET stack exhibited the highest performance: power conversion efficiency (PCE) ≈ 3%, Voc = 0.9V, and Jsc ≈ 10-15 mA/cm2. These stacks exhibited high visible range transparency, and provided the requisite power for a switchable electrochromic stack having an inkjet-printed, optically-active layer of tungsten trioxide (WO3), peroxo-tungstic acid dihydrate, and titania (TiO2) nano-particle-based blend. The electrochromic stacks (i.e., PET/ITO/LiClO4/WO3 on ITO/PET and Ag nanowire/PDMS substrates) exhibited optical switching under external bias from the PV stack (or an electrical outlet), with 7 s coloration time, 8 s bleaching time, and 0.36-0.75 optical modulation at λ = 525 nm. The devices were paired using an Internet of Things controller that enabled wireless switching.
ContributorsAzhar, Ebraheem (Author) / Yu, Hongbin (Thesis advisor) / Dey, Sandwip (Thesis advisor) / Goryll, Michael (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
156289-Thumbnail Image.png
Description
Early detection and treatment of disease is paramount for improving human health and wellness. Micro-scale devices promote new opportunities for the rapid, cost-effective, and accurate identification of altered biological states indicative of disease early-onset; these devices function at a scale more sensitive to numerous biological processes. The application of Micro-Electro-Mechanical

Early detection and treatment of disease is paramount for improving human health and wellness. Micro-scale devices promote new opportunities for the rapid, cost-effective, and accurate identification of altered biological states indicative of disease early-onset; these devices function at a scale more sensitive to numerous biological processes. The application of Micro-Electro-Mechanical Systems (MEMS) in biomedical settings has recently emerged and flourished over course of the last two decades, requiring a deep understanding of material biocompatibility, biosensing sensitively/selectively, biological constraints for artificial tissue/organ replacement, and the regulations in place to ensure device safety. Capitalizing on the inherent physical differences between cancerous and healthy cells, our ultra-thin silicone membrane enables earlier identification of bladder cancer—with a 70% recurrence rate. Building on this breakthrough, we have devised an array to multiplex this sample-analysis in real-time as well as expanding beyond bladder cancer. The introduction of new materials—with novel properties—to augment current and create innovative medical implants requires the careful analysis of material impact on cellular toxicity, mutagenicity, reactivity, and stability. Finally, the achievement of replacing defective biological systems with implanted artificial equivalents that must function within the same biological constraints, have consistent reliability, and ultimately show the promise of improving human health as demonstrated by our hydrogel check valve. The ongoing proliferation, expanding prevalence, and persistent improvement in MEMS devices through greater sensitivity, specificity, and integration with biological processes will undoubtedly bolster medical science with novel MEMS-based diagnostics and therapeutics.
ContributorsPodlevsky, Jennie Hewitt Appel (Author) / Chae, Junseok (Thesis advisor) / Goryll, Michael (Committee member) / Kozicki, Michael (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2018
156761-Thumbnail Image.png
Description
The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and lateral carrier transport, metalization, etc, are individually evaluated, and then by adding all these components together, the total loss is calculated. The concept of ll factor and its direct dependence on the loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly every processing step of the cell fabrication is investigated. This analysis provides a focus lens to identify the main source of losses in SHJ solar cells and pave the path for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we explain how it can be directly measured; how it can be calculated and what expressions can better approximate its value and under what operating conditions. The relation between FF and cell operating condition at the MPP is investigated. We separately analyzed the main FF sources of losses including recombination, sheet resistance, contact resistance and metalization. We study FF loss due to recombination and its separate components which include the Augur, radiative and SRH recombination is investigated. We study FF loss due to contact resistance and its separate components which include the contact resistance of dierent interfaces, e.g. between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral transport and its components that including the TCO sheet resistance, the nger and the busbars resistances.
ContributorsLeilaeioun, Mohammadmehdi (Ashling) (Author) / Goodnick, Stephen (Thesis advisor) / Goryll, Michael (Thesis advisor) / Bertoni, Mariana (Committee member) / Bowden, Stuart (Committee member) / Stuckelberger, Michael (Committee member) / Arizona State University (Publisher)
Created2018
156786-Thumbnail Image.png
Description
Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and

Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and throughput.

This dissertation presents several works on developing novel plasmonic based techniques for protein detections on the last two aspects to extend the application field. A fast electrochemically controlled plasmonic detection technique is first developed with the capability of monitoring electrochemical signal with nanosecond response time. The study reveals that the conformational gating of electron transfer in a redox protein (cytochrome c) takes place over a broad range of time scales (sub-µs to ms). The second platform integrates ultra-low volume piezoelectric liquid dispensing and plasmonic imaging detection to monitor different protein binding processes simultaneously with low sample cost. Experiment demonstrates the system can observe binding kinetics in 10×10 microarray of 6 nL droplet, with variations of kinetic rate constants among spots less than ±5%. A focused plasmonic imaging system with bi-cell algorithm is also proposed for spatial resolution enhancement. The two operation modes, scanning mode and focus mode, can be applied for different purposes. Measurement of bacterial aggregation demonstrates the higher spatial resolution. Detections of polystyrene beads binding and 50 nm gold nanoparticles oscillation show a high signal to noise ratio of the system.

The real properties of protein rely on its dynamic personalities. The above works shed light upon fast and high throughput detection of protein kinetics, and enable more applications for plasmonic imaging techniques. It is anticipated that such methods will help to invoke a new surge to unveil the mysteries of biological activities and chemical process.
ContributorsWang, Yan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
156930-Thumbnail Image.png
Description
Over the past several decades, there has been a growing interest in the use of fluorescent probes in low-cost diagnostic devices for resource-limited environments. This dissertation details the design, development, and deployment of an inexpensive, multiplexed, and quantitative, fluorescence-based lateral flow immunoassay platform, in light of the specific constraints associated

Over the past several decades, there has been a growing interest in the use of fluorescent probes in low-cost diagnostic devices for resource-limited environments. This dissertation details the design, development, and deployment of an inexpensive, multiplexed, and quantitative, fluorescence-based lateral flow immunoassay platform, in light of the specific constraints associated with resource-limited settings.

This effort grew out of the need to develop a highly sensitive, field-deployable platform to be used as a primary screening and early detection tool for serologic biomarkers for the high-risk human papillomavirus (hrHPV) infection. A hrHPV infection is a precursor for developing high-grade cervical intraepithelial neoplasia (CIN 2/3+). Early detection requires high sensitivity and a low limit-of-detection (LOD). To this end, the developed platform (DxArray) takes advantage of the specificity of immunoassays and the selectivity of fluorescence for early disease detection. The long term goal is to improve the quality of life for several hundred million women globally, at risk of being infected with hrHPV.

The developed platform uses fluorescent labels over the gold-standard colorimetric labels in a compact, high-sensitivity lateral flow assay configuration. It is also compatible with POC settings as it substitutes expensive and bulky light sources for LEDs, low-light CMOS cameras, and photomultiplier tubes for photodiodes, in a transillumination architecture, and eliminates the need for expensive focusing/transfer optics. The platform uses high-quality interference filters at less than $1 each, enabling a rugged and robust design suitable for field use.

The limit of detection (LOD) of the developed platform is within an order of magnitude of centralized laboratory diagnostic instruments. It enhances the LOD of absorbance or reflectometric and visual readout lateral flow assays by 2 - 3 orders of magnitude. This system could be applied toward any chemical or bioanalytical procedure that requires a high performance at low-cost.

The knowledge and techniques developed in this effort is relevant to the community of researchers and industry developers looking to deploy inexpensive, quantitative, and highly sensitive diagnostic devices to resource-limited settings.
ContributorsObahiagbon, Uwadiae (Author) / Blain Christen, Jennifer M (Thesis advisor) / Anderson, Karen S (Committee member) / Goryll, Michael (Committee member) / Smith, Barbara S. (Committee member) / Arizona State University (Publisher)
Created2018
155070-Thumbnail Image.png
Description
Sb-based type-II superlattices (T2SLs) are potential alternative to HgCdTe for infrared detection due to their low manufacturing cost, good uniformity, high structural stability, and suppressed Auger recombination. The emerging InAs/InAsSb T2SLs have minority carrier lifetimes 1-2 orders of magnitude longer than those of the well-studied InAs/InGaSb T2SLs, and therefore have

Sb-based type-II superlattices (T2SLs) are potential alternative to HgCdTe for infrared detection due to their low manufacturing cost, good uniformity, high structural stability, and suppressed Auger recombination. The emerging InAs/InAsSb T2SLs have minority carrier lifetimes 1-2 orders of magnitude longer than those of the well-studied InAs/InGaSb T2SLs, and therefore have the potential to achieve photodetectors with higher performance. This work develops a novel method to measure the minority carrier lifetimes in infrared materials, and reports a comprehensive characterization of minority carrier lifetime and transport in InAs/InAsSb T2SLs at temperatures below 77 K.

A real-time baseline correction (RBC) method for minority carrier lifetime measurement is developed by upgrading a conventional boxcar-based time-resolved photoluminescence (TRPL) experimental system that suffers from low signal-to-noise ratio due to strong low frequency noise. The key is to modify the impulse response of the conventional TRPL system, and therefore the system becomes less sensitive to the dominant noise. Using this RBC method, the signal-to-noise ratio is improved by 2 orders of magnitude.

A record long minority carrier lifetime of 12.8 μs is observed in a high-quality mid-wavelength infrared InAs/InAsSb T2SLs at 15 K. It is further discovered that this long lifetime is partially due to strong carrier localization, which is revealed by temperature-dependent photoluminescence (PL) and TRPL measurements for InAs/InAsSb T2SLs with different period thicknesses. Moreover, the PL and TRPL results suggest that the atomic layer thickness variation is the main origin of carrier localization, which is further confirmed by a calculation using transfer matrix method.

To study the impact of the carrier localization on the device performance of InAs/InAsSb photodetectors, minority hole diffusion lengths are determined by the simulation of external quantum efficiency (EQE). A comparative study shows that carrier localization has negligible effect on the minority hole diffusion length in InAs/InAsSb T2SLs, and the long minority carrier lifetimes enhanced by carrier localization is not beneficial for photodetector operation.
ContributorsLin, Zhiyuan (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155072-Thumbnail Image.png
Description
This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and

This work demonstrates novel nBn photodetectors including mid-wave infrared (MWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices (T2SLs) with charge as the output signal, and visible nBn photodetectors based on CdTe with current output. Furthermore, visible/MWIR two-color photodetectors (2CPDs) are fabricated through monolithic integration of the CdTe nBn photodetector and an InSb photodiode.

The MWIR nBn photodetectors have a potential well for holes present in the barrier layer. At low voltages of < −0.2 V, which ensure low dark current <10-5 A/cm2 at 77 K, photogenerated holes are collected in this well with a storage lifetime of 40 s. This charge collection process is an in-device signal integration process that reduces the random noise significantly. Since the stored holes can be readout laterally as in charge-coupled devices, it is therefore possible to make charge-output nBn with much lower noise than conventional current-output nBn photodetectors.

The visible nBn photodetectors have a CdTe absorber layer and a ZnTe barrier layer with an aligned valence band edge. By using a novel ITO/undoped-CdTe top contact design, it has achieved a high specific detectivity of 3×1013 cm-Hz1/2/W at room temperature. Particularly, this CdTe nBn photodetector grown on InSb substrates enables the monolithic integration of CdTe and InSb photodetectors, and provides a platform to study in-depth device physics of nBn photodetectors at room temperature.

Furthermore, the visible/MWIR 2CPD has been developed by the monolithic integration of the CdTe nBn and an InSb photodiode through an n-CdTe/p-InSb tunnel junction. At 77 K, the photoresponse of the 2CPD can be switched between a 1-5.5 μm MWIR band and a 350-780 nm visible band by illuminating the device with an external light source or not, and applying with proper voltages. Under optimum conditions, the 2CPD has achieved a MWIR peak responsivity of 0.75 A/W with a band rejection ratio (BRR) of 52 dB, and a visible peak responsivity of 0.3 A/W with a BRR of 18 dB. This 2CPD has enabled future compact image sensors with high fill-factor and responsivity switchable between visible and MWIR colors.
ContributorsHe, Zhaoyu (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2016
155112-Thumbnail Image.png
Description
A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is a necessity to study stochastic gene expression in order to discover the biosignatures at the single-cell level. The heterogeneous gene

A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is a necessity to study stochastic gene expression in order to discover the biosignatures at the single-cell level. The heterogeneous gene expression of single cells from an isogenic cell population has already been studied for years. Yet to date, single-cell studies have been confined in a fashion of analyzing isolated single cells or a dilution of cells from the bulk-cell populations. These techniques or devices are limited by either the mechanism of cell lysis or the difficulties to target specific cells without harming neighboring cells.

This dissertation presents the development of a laser lysis chip combined with a two-photon laser system to perform single-cell lysis of single cells in situ from three-dimensional (3D) cell spheroids followed by analysis of the cell lysate with two-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The 3D spheroids were trapped in a well in the custom-designed laser lysis chip. Next, each single cell of interest in the 3D spheroid was identified and lysed one at a time utilizing a two-photon excited laser. After each cell lysis, the contents inside the target cell were released to the surrounding media and carried out to the lysate collector. Finally, the gene expression of each individual cell was measured by two-step RT-qPCR then spatially mapped back to its original location in the spheroids to construct a 3D gene expression map.

This novel technology and approach enables multiple gene expression measurements in single cells of multicellular organisms as well as cell-to-cell heterogeneous responses to the environment with spatial recognition. Furthermore, this method can be applied to study precancerous tissues for a better understanding of cancer progression and for identifying early tumor development.
ContributorsWang, Guozhen (Author) / Meldrum, Deirdre R (Thesis advisor) / Chao, Shih-hui (Committee member) / Wang, Hong (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155877-Thumbnail Image.png
Description
Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe

Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe nanowires (NWs) that are synthesized

through a simple vapor-liquid-solid (VLS) method. By controlling the presence or

the absence of Au catalysts and controlling the growth parameters such as growth

temperature, various growth morphologies of ZnTe, such as thin films and nanowires

can be obtained. The characterization of the ZnTe nanostructures and films was

performed using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy

(EDX), high- resolution transmission electron microscope (HRTEM), X-ray

diffraction (XRD), photoluminescence (PL), Raman spectroscopy and light scattering

measurement. After confirming the crystal purity of ZnTe, two-terminal diodes and

three-terminal transistors were fabricated with both nanowire and planar nano-sheet

configurations, in order to correlate the nanostructure geometry to device performance

including field effect mobility, Schottky barrier characteristics, and turn-on

characteristics. Additionally, optoelectronic properties such as photoconductive gain

and responsivity were compared against morphology. Finally, ZnTe was explored in

conjunction with ZnO in order to form type-II band alignment in a core-shell nanostructure.

Various characterization techniques including scanning electron microscopy,

energy-dispersive X-ray spectroscopy , x-ray diffraction, Raman spectroscopy, UV-vis

reflectance spectra and photoluminescence were used to investigate the modification

of ZnO/ZnTe core/shell structure properties. In PL spectra, the eliminated PL intensity

of ZnO wires is primarily attributed to the efficient charge transfer process

occurring between ZnO and ZnTe, due to the band alignment in the core/shell structure. Moreover, the result of UV-vis reflectance spectra corresponds to the band

gap energy of ZnO and ZnTe, respectively, which confirm that the sample consists of

ZnO/ZnTe core/shell structure of good quality.
ContributorsPeng, Jhih-hong (Author) / Yu, Hongbin (Thesis advisor) / Roedel, Ronald (Committee member) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017