Matching Items (123)
Filtering by

Clear all filters

151213-Thumbnail Image.png
Description
The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future

The reliability assessment of future distribution networks is an important issue in power engineering for both utilities and customers. This is due to the increasing demand for more reliable service with less interruption frequency and duration. This research consists of two main parts related to the evaluation of the future distribution system reliability. An innovative algorithm named the encoded Markov cut set (EMCS) is proposed to evaluate the reliability of the networked power distribution system. The proposed algorithm is based on the identification of circuit minimal tie sets using the concept of Petri nets. Prime number encoding and unique prime factorization are then utilized to add more flexibility in communicating between the systems states, and to classify the states as tie sets, cut sets, or minimal cut sets. Different reduction and truncation techniques are proposed to reduce the size of the state space. The Markov model is used to compute the availability, mean time to failure, and failure frequency of the network. A well-known Test Bed is used to illustrate the analysis (the Roy Billinton test system (RBTS)), and different load and system reliability indices are calculated. The method shown is algorithmic and appears suitable for off-line comparison of alternative secondary distribution system designs on the basis of their reliability. The second part assesses the impact of the conventional and renewable distributed generation (DG) on the reliability of the future distribution system. This takes into account the variability of the power output of the renewable DG, such as wind and solar DGs, and the chronological nature of the load demand. The stochastic nature of the renewable resources and its influence on the reliability of the system are modeled and studied by computing the adequacy transition rate. Then, an integrated Markov model that incorporates the DG adequacy transition rate, DG mechanical failure, and starting and switching probability is proposed and utilized to give accurate results for the DG reliability impact. The main focus in this research is the conventional, solar, and wind DG units. However, the technique used appears to be applicable to any renewable energy source.
ContributorsAlmuhaini, Mohammad (Author) / Heydt, Gerald (Thesis advisor) / Ayyanar, Raja (Committee member) / Gel, Esma (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
151214-Thumbnail Image.png
Description
In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work

In electric power systems, phasor measurement units (PMUs) are capable of providing synchronized voltage and current phasor measurements which are superior to conventional measurements collected by the supervisory control and data acquisition (SCADA) system in terms of resolution and accuracy. These measurements are known as synchrophasor measurements. Considerable research work has been done on the applications of PMU measurements based on the as-sumption that a high level of accuracy is obtained in the field. The study in this dissertation is conducted to address the basic issue concerning the accuracy of actual PMU measurements in the field. Synchronization is one of the important features of PMU measurements. However, the study presented in this dissertation reveals that the problem of faulty synchronization between measurements with the same time stamps from different PMUs exists. A Kalman filter model is proposed to analyze and calcu-late the time skew error caused by faulty synchronization. In order to achieve a high level of accuracy of PMU measurements, inno-vative methods are proposed to detect and identify system state changes or bad data which are reflected by changes in the measurements. This procedure is ap-plied as a key step in adaptive Kalman filtering of PMU measurements to over-come the insensitivity of a conventional Kalman filter. Calibration of PMU measurements is implemented in specific PMU instal-lation scenarios using transmission line (TL) parameters from operation planning data. The voltage and current correction factors calculated from the calibration procedure indicate the possible errors in PMU measurements. Correction factors can be applied in on-line calibration of PMU measurements. A study is conducted to address an important issue when integrating PMU measurements into state estimation. The reporting rate of PMU measurements is much higher than that of the measurements collected by the SCADA. The ques-tion of how to buffer PMU measurements is raised. The impact of PMU meas-urement buffer length on state estimation is discussed. A method based on hy-pothesis testing is proposed to determine the optimal buffer length of PMU meas-urements considering the two conflicting features of PMU measurements, i. e. un-certainty and variability. Results are presented for actual PMU synchrophasor measurements.
ContributorsZhang, Qing (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
151276-Thumbnail Image.png
Description
This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the

This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the phenomenon of fault-induced delayed voltage recovery (FIDVR) and the cause of motor stalling. The system of differential equations representing the single phase induction motor model is developed and formulated. Implicit backward Euler method is applied to numerically integrate the stator currents that are to be drawn from the electric network. The angular position dependency of the rotor shaft is retained in the inductance matrix associated with the model to accurately capture the dynamics of the motor loads. The equivalent circuit of the new model is interfaced with the electric network in the EMTP. The dynamic response of the motor when subjected to faults at different points on voltage waveform has been studied using the EMTP simulator. The mechanism and the impacts of motor stalling need to be explored with multiple units of the detailed model connected to a realistic three-phase distribution system. The model developed can be utilized to assess and improve the product design of compressor motors by air-conditioner manufacturers. Another critical application of the model would be to examine the impacts of asymmetric transmission faults on distribution systems to investigate and develop mitigation measures for the FIDVR problem.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
151133-Thumbnail Image.png
Description
In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit model. Then it describes the process of creating a new battery circuit model which is referred to as the kinetic battery model. During this process,

In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit model. Then it describes the process of creating a new battery circuit model which is referred to as the kinetic battery model. During this process, a new general equation is derived. The original equation in the kinetic battery model is only valid at a constant current rate, while the new equation can be used for not only constant current but also linear or nonlinear current. Following the new equation, a circuit representation is built based on the kinetic battery model. Then, by matching the two sets of differential equations of the two models together, the ability to connect the analytical model with the battery circuit model is found. To verify the new battery circuit model is built correctly, the new circuit model is implemented into PSpice simulation software to test the charging performance with constant current, and Matlab/Simulink is also employed to simulate a realistic battery charging process with two-stage charging method. The results have shown the new circuit model is available to be used in realistic scenarios. And because the kinetic battery model can describe different types of rechargeable batteries, the new circuit model is also capable to be used for various battery types.
ContributorsKong, Dexinghui (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012
149494-Thumbnail Image.png
Description
The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This has been proved at five different commercial foundries on technologies ranging from 0.5 to 0.15 μm. Another critical issue facing CMOS processes on insulated substrates is the scaling of the thin silicon channel. Consequently, the future direction of SOI/SOS CMOS transistors may trend away from partially depleted (PD) transistors and towards fully depleted (FD) devices. FD-CMOS are already being implemented in multiple applications due to their very low power capability. Since the FD-CMOS market only figures to grow, it is appropriate that MESFETs also be developed for these processes. The beginning of this thesis will focus on the device aspects of both PD and FD-MESFETs including their layout structure, DC and RF characteristics, and breakdown voltage. The second half will then shift the focus towards implementing both types of MESFETs in an analog circuit application. Aside from their high breakdown ability, MESFETs also feature depletion mode operation, easy to adjust but well controlled threshold voltages, and fT's up to 45 GHz. Those unique characteristics can allow certain designs that were previously difficult to implement or prohibitively expensive using conventional technologies to now be achieved. One such application which benefits is low dropout regulators (LDO). By utilizing an n-channel MESFET as the pass transistor, a LDO featuring very low dropout voltage, fast transient response, and stable operation can be achieved without an external capacitance. With the focus of this thesis being MESFET based LDOs, the device discussion will be mostly tailored towards optimally designing MESFETs for this particular application.
ContributorsLepkowski, William (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2010
149510-Thumbnail Image.png
Description
Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated

Optical Instrument Transformers (OIT) have been developed as an alternative to traditional instrument transformers (IT). The question "Can optical instrument transformers substitute for the traditional transformers?" is the main motivation of this study. Finding the answer for this question and developing complete models are the contributions of this work. Dedicated test facilities are developed so that the steady state and transient performances of analog outputs of a magnetic current transformer (CT) and a magnetic voltage transformer (VT) are compared with that of an optical current transformer (OCT) and an optical voltage transformer (OVT) respectively. Frequency response characteristics of OIT outputs are obtained. Comparison results show that OITs have a specified accuracy of 0.3% in all cases. They are linear, and DC offset does not saturate the systems. The OIT output signal has a 40~60 μs time delay, but this is typically less than the equivalent phase difference permitted by the IEEE and IEC standards for protection applications. Analog outputs have significantly higher bandwidths (adjustable to 20 to 40 kHz) than the IT. The digital output signal bandwidth (2.4 kHz) of an OCT is significantly lower than the analog signal bandwidth (20 kHz) due to the sampling rates involved. The OIT analog outputs may have significant white noise of 6%, but the white noise does not affect accuracy or protection performance. Temperatures up to 50oC do not adversely affect the performance of the OITs. Three types of models are developed for analog outputs: analog, digital, and complete models. Well-known mathematical methods, such as network synthesis and Jones calculus methods are applied. The developed models are compared with experiment results and are verified with simulation programs. Results show less than 1.5% for OCT and 2% for OVT difference and that the developed models can be used for power system simulations and the method used for the development can be used to develop models for all other brands of optical systems. The communication and data transfer between the all-digital protection systems is investigated by developing a test facility for all digital protection systems. Test results show that different manufacturers' relays and transformers based on the IEC standard can serve the power system successfully.
ContributorsKucuksari, Sadik (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald T (Committee member) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Farmer, Richard (Committee member) / Arizona State University (Publisher)
Created2010
149447-Thumbnail Image.png
Description
An advantage of doubly fed induction generators (DFIGs) as compared to conventional fixed speed wind turbine generators is higher efficiency. This higher efficiency is achieved due to the ability of the DFIG to operate near its optimal turbine efficiency over a wider range of wind speeds through variable speed operation.

An advantage of doubly fed induction generators (DFIGs) as compared to conventional fixed speed wind turbine generators is higher efficiency. This higher efficiency is achieved due to the ability of the DFIG to operate near its optimal turbine efficiency over a wider range of wind speeds through variable speed operation. This is achieved through the application of a back-to-back converter that tightly controls the rotor current and allows for asynchronous operation. In doing so, however, the power electronic converter effectively decouples the inertia of the turbine from the system. Hence, with the increase in penetration of DFIG based wind farms, the effective inertia of the system will be reduced. With this assertion, the present study is aimed at identifying the systematic approach to pinpoint the impact of increased penetration of DFIGs on a large realistic system. The techniques proposed in this work are tested on a large test system representing the Midwestern portion of the U.S. Interconnection. The electromechanical modes that are both detrimentally and beneficially affected by the change in inertia are identified. The combination of small-signal stability analysis coupled with the large disturbance analysis of exciting the mode identified is found to provide a detailed picture of the impact on the system. The work is extended to develop suitable control strategies to mitigate the impact of significant DFIG penetration on a large power system. Supplementary control is developed for the DFIG power converters such that the effective inertia contributed by these wind generators to the system is increased. Results obtained on the large realistic power system indicate that the frequency nadir following a large power impact is effectively improved with the proposed control strategy. The proposed control is also validated against sudden wind speed changes in the form of wind gusts and wind ramps. The beneficial impact in terms of damping power system oscillations is observed, which is validated by eigenvalue analysis. Another control mechanism is developed aiming at designing the power system stabilizer (PSS) for a DFIG similar to the PSS of synchronous machines. Although both the supplementary control strategies serve the purpose of improving the damping of the mode with detrimental impact, better damping performance is observed when the DFIG is equipped with both the controllers.
ContributorsGautam, Durga (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Farmer, Richard (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2010
149394-Thumbnail Image.png
Description
Market acceptability of distributed energy resource (DER) technologies and the gradual and consistent increase in their depth of penetration have generated significant interest over the past few years. In particular, in Arizona and several other states there has been a substantial in-crease in distributed photovoltaic (PV) generation interfaced to the

Market acceptability of distributed energy resource (DER) technologies and the gradual and consistent increase in their depth of penetration have generated significant interest over the past few years. In particular, in Arizona and several other states there has been a substantial in-crease in distributed photovoltaic (PV) generation interfaced to the power distribution systems, and is expected to continue to grow at a significant rate. This has made integration, control and optimal operation of DER units a main area of focus in the design and operation of distribution systems. Grid-connected, distributed PV covers a wide range of power levels ranging from small, single phase residential roof-top systems to large three-phase, multi-megawatt systems. The focus of this work is on analyzing large, three-phase systems, with the power distribution system of the Arizona State University (ASU) Tempe campus used as the test bed for analysis and simulation. The Tempe campus of ASU has presently 4.5 MW of installed PV capacity, with another 4.5 MW expected to be added by 2011, which will represent about 22% of PV penetration. The PV systems are interfaced to the grid invariably by a power electronic inverter. Many of the important characteristics of the PV generation are influenced by the design and performance of the inverter, and hence suitable models of the inverter are needed to analyze PV systems. Several models of distributed generation (DG), including switching and average models, suitable for different study objectives, and different control modes of the inverter have been described in this thesis. A critical function of the inverters is to quickly detect and eliminate unintentional islands during grid failure. In this thesis, many active anti-islanding techniques with voltage and frequency positive feedback have been studied. Effectiveness of these techniques in terms of the tripping times specified in IEEE Std. 1547 for interconnecting distributed resources with electric power systems has been analyzed. The impact of distributed PV on the voltage profile of a distribution system has been ana-lyzed with ASU system as the test bed using power systems analysis tools namely PowerWorld and CYMDIST. The present inverters complying with IEEE 1547 do not regulate the system vol-tage. However, the future inverters especially at higher power levels are expected to perform sev-eral grid support functions including voltage regulation and reactive power support. Hence, the impact of inverters with the reactive power support capabilities is also analyzed. Various test sce-narios corresponding to different grid conditions are simulated and it is shown that distributed PV improves the voltage profile of the system. The improvements are more significant when the PV generators are capable of reactive power support. Detailed short circuit analyses are also per-formed on the system, and the impact of distributed PV on the fault current magnitude, with and without reactive power injection, have been studied.
ContributorsNarayanan, Anand (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald T (Committee member) / Arizona State University (Publisher)
Created2010
171988-Thumbnail Image.png
Description
With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies. Although, currently, most of the power system studies are being

With the increasing penetration levels of distributed energy resources along distribution feeders, the importance of load modeling has grown significantly and therefore it is important to have an accurate representation of the distribution system in the planning and operation studies. Although, currently, most of the power system studies are being done using positive sequence commercial software packages for computational convenience purposes, it comes at the cost of reduced accuracy when compared to the more accurate electromagnetic transient (EMT) simulators (but more computationally intensive). However, it is expected, that in the next several years, the use of EMT simulators for large-scale system studies would become a necessity to implement the ambitious renewable energy targets adopted by many countries across the world. Currently, the issue of developing more accurate EMT feeder and load models has yet to be addressed. Therefore, in the first phase of this work, an optimization algorithm to synthesize an EMT distribution feeder and load model has been developed by capturing the current transients when three-phase voltage measurements (obtained from a local utility) are played-in as input, from events such as sub-transmission faults, to the synthesized model. Using the developed algorithm, for the proposed feeder model, both the load composition and the load parameters have been estimated. The synthesized load model has a load composition which includes impedance loads, single-phase induction motor (SPHIM) loads and three-phase induction motor loads. In the second phase of this work, an analytical formulation of a 24 V EMT contactor is developed to trip the air conditioner EMT SPHIM load, in the feeder and load model developed in Phase 1 of this work, under low voltage conditions. Additionally, a new methodology is developed, to estimate and incorporate the trip and reconnection settings of the proposed EMT contactor model to trip, reconnect and stall the SPHIMs in a positive sequence simulator (PSLF) for single-line to ground faults. Also, the proposed methodology has been tested on a modified three-segment three-phase feeder model using a local utility’s practical feeder topological and loading information. Finally, the developed methodology is modified to accommodate three-phase faults in the system.
ContributorsNekkalapu, Sameer (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2022
171431-Thumbnail Image.png
Description
Adhering to an ever-increasing demand for innovation in the field of onboard electric vehicle (EV) charging, several technical aspects pertaining to the design and performance enhancement of integrated multi-port charger topologies are discussed in this study. This study also elucidates various research challenges pertaining to each module of the topology

Adhering to an ever-increasing demand for innovation in the field of onboard electric vehicle (EV) charging, several technical aspects pertaining to the design and performance enhancement of integrated multi-port charger topologies are discussed in this study. This study also elucidates various research challenges pertaining to each module of the topology and elucidates technically validated solutions for each.Firstly, targeting the input side totempole power factor corrector (TPFC) circuit, a novel digital filter based Active Mitigation Scheme (AMS) is proposed to curb the third harmonic component, along with a novel discretized sampling-based robust control scheme. Experimental verification of these techniques yields an enhanced Total Harmonic Distortion (THD) of 1.68%, enhanced efficiency of 98.1% and resultant power factor of 0.998 (lag). Further, focusing on the bidirectional CLLC based DC/DC converter topology, a general harmonic approximation (GHA) based secondary side turnoff current minimization technique is discussed. Numerous fabrication and design-based constraints and correlations for parametric modelling of high frequency planar transformer (HFPT) are explained with analytical and 3D Finite Element Analysis (FEA) findings. Further, characterization of the plant transfer function of all-inclusive CLLC model is described along with hybrid Sliding Mode Control (SMC) based control scheme. The steady state experimental results at 1kW rated load show a peak efficiency of 98.49%, while the quantification of dynamic response portray a settling time reduction of 46.4% and an over/undershoot reduction of 33%. Further, comprehensive modeling of triple active bridge (TAB) DC/DC converter topology is presented with special focus on the control scheme and decoupling capabilities to independently regulate the output bridges. With an objective to reduce the overall losses and to add a dimension of controllability, a three-loop control scheme is proposed with power flow optimization. Inculcating the benefits of multiport and resonant topologies, a comprehensive multi-variable loss optimization study of a Triple Active C^3 L^3 (TAC^3L^3) converter is discussed. The performance of eight different hybrid modulation schemes is compared with respect to the developed global loss minimization objective function. Experimental validations for various loading conditions are presented for a wide-gain bidirectional operation (400V/500-600V/24-28V), portraying a peak converter efficiency of 97.42%.
ContributorsChandwani, Ashwin Vijay (Author) / Mallik, Ayan (Thesis advisor) / Ayyanar, Raja (Thesis advisor) / Kannan, Arunanchala Mada (Committee member) / Hedman, Mojdeh (Committee member) / Arizona State University (Publisher)
Created2022