Matching Items (6)
Filtering by

Clear all filters

147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132368-Thumbnail Image.png
Description
A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the

A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the reasons why particular combinations were more effective than others is explored.
ContributorsMazboudi, Yassine Ahmad (Author) / Yang, Yezhou (Thesis director) / Ren, Yi (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168584-Thumbnail Image.png
Description
Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among

Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among all the statistical methods. This study focuses on the mechanical properties of materials, both static and fatigue, the main engineering field on which this study focuses. This work can be summarized in the following items: First, maintaining the safety of vintage pipelines requires accurately estimating the strength. The objective is to predict the reliability-based strength using nondestructive multimodality surface information. Bayesian model averaging (BMA) is implemented for fusing multimodality non-destructive testing results for gas pipeline strength estimation. Several incremental improvements are proposed in the algorithm implementation. Second, the objective is to develop a statistical uncertainty quantification method for fatigue stress-life (S-N) curves with sparse data.Hierarchical Bayesian data augmentation (HBDA) is proposed to integrate hierarchical Bayesian modeling (HBM) and Bayesian data augmentation (BDA) to deal with sparse data problems for fatigue S-N curves. The third objective is to develop a physics-guided machine learning model to overcome limitations in parametric regression models and classical machine learning models for fatigue data analysis. A Probabilistic Physics-guided Neural Network (PPgNN) is proposed for probabilistic fatigue S-N curve estimation. This model is further developed for missing data and arbitrary output distribution problems. Fourth, multi-fidelity modeling combines the advantages of low- and high-fidelity models to achieve a required accuracy at a reasonable computation cost. The fourth objective is to develop a neural network approach for multi-fidelity modeling by learning the correlation between low- and high-fidelity models. Finally, conclusions are drawn, and future work is outlined based on the current study.
ContributorsChen, Jie (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Mignolet, Marc (Committee member) / Ren, Yi (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2022
156938-Thumbnail Image.png
Description
Coordination and control of Intelligent Agents as a team is considered in this thesis.

Intelligent agents learn from experiences, and in times of uncertainty use the knowl-

edge acquired to make decisions and accomplish their individual or team objectives.

Agent objectives are defined using cost functions designed uniquely for the collective

task being performed.

Coordination and control of Intelligent Agents as a team is considered in this thesis.

Intelligent agents learn from experiences, and in times of uncertainty use the knowl-

edge acquired to make decisions and accomplish their individual or team objectives.

Agent objectives are defined using cost functions designed uniquely for the collective

task being performed. Individual agent costs are coupled in such a way that group ob-

jective is attained while minimizing individual costs. Information Asymmetry refers

to situations where interacting agents have no knowledge or partial knowledge of cost

functions of other agents. By virtue of their intelligence, i.e., by learning from past

experiences agents learn cost functions of other agents, predict their responses and

act adaptively to accomplish the team’s goal.

Algorithms that agents use for learning others’ cost functions are called Learn-

ing Algorithms, and algorithms agents use for computing actuation (control) which

drives them towards their goal and minimize their cost functions are called Control

Algorithms. Typically knowledge acquired using learning algorithms is used in con-

trol algorithms for computing control signals. Learning and control algorithms are

designed in such a way that the multi-agent system as a whole remains stable during

learning and later at an equilibrium. An equilibrium is defined as the event/point

where cost functions of all agents are optimized simultaneously. Cost functions are

designed so that the equilibrium coincides with the goal state multi-agent system as

a whole is trying to reach.

In collective load transport, two or more agents (robots) carry a load from point

A to point B in space. Robots could have different control preferences, for example,

different actuation abilities, however, are still required to coordinate and perform

load transport. Control preferences for each robot are characterized using a scalar

parameter θ i unique to the robot being considered and unknown to other robots.

With the aid of state and control input observations, agents learn control preferences

of other agents, optimize individual costs and drive the multi-agent system to a goal

state.

Two learning and Control algorithms are presented. In the first algorithm(LCA-

1), an existing work, each agent optimizes a cost function similar to 1-step receding

horizon optimal control problem for control. LCA-1 uses recursive least squares as

the learning algorithm and guarantees complete learning in two time steps. LCA-1 is

experimentally verified as part of this thesis.

A novel learning and control algorithm (LCA-2) is proposed and verified in sim-

ulations and on hardware. In LCA-2, each agent solves an infinite horizon linear

quadratic regulator (LQR) problem for computing control. LCA-2 uses a learning al-

gorithm similar to line search methods, and guarantees learning convergence to true

values asymptotically.

Simulations and hardware implementation show that the LCA-2 is stable for a

variety of systems. Load transport is demonstrated using both the algorithms. Ex-

periments running algorithm LCA-2 are able to resist disturbances and balance the

assumed load better compared to LCA-1.
ContributorsKAMBAM, KARTHIK (Author) / Zhang, Wenlong (Thesis advisor) / Nedich, Angelia (Thesis advisor) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
158796-Thumbnail Image.png
Description
Daily collaborative tasks like pushing a table or a couch require haptic communication between the people doing the task. To design collaborative motion planning algorithms for such applications, it is important to understand human behavior. Collaborative tasks involve continuous adaptations and intent recognition between the people involved in the task.

Daily collaborative tasks like pushing a table or a couch require haptic communication between the people doing the task. To design collaborative motion planning algorithms for such applications, it is important to understand human behavior. Collaborative tasks involve continuous adaptations and intent recognition between the people involved in the task. This thesis explores the coordination between the human-partners through a virtual setup involving continuous visual feedback. The interaction and coordination are modeled as a two-step process: 1) Collecting data for a collaborative couch-pushing task, where both the people doing the task have complete information about the goal but are unaware of each other's cost functions or intentions and 2) processing the emergent behavior from complete information and fitting a model for this behavior to validate a mathematical model of agent-behavior in multi-agent collaborative tasks. The baseline model is updated using different approaches to resemble the trajectories generated by these models to human trajectories. All these models are compared to each other. The action profiles of both the agents and the position and velocity of the manipulated object during a goal-oriented task is recorded and used as expert-demonstrations to fit models resembling human behaviors. Analysis through hypothesis teasing is also performed to identify the difference in behaviors when there are complete information and information asymmetry among agents regarding the goal position.
ContributorsShintre, Pallavi Shrinivas (Author) / Zhang, Wenlong (Thesis advisor) / Si, Jennie (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2020