Matching Items (5)
Filtering by

Clear all filters

147686-Thumbnail Image.png
Description

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated passing and shooting appear to facilitate accuracy. This study tests if shooting baskets “in rhythm,” as measured by the catch-to-release time, reliably enhances shooting accuracy. It then tests if an “in rhythm” timing is commonly detected and agreed upon by observers, and if observer timing ratings are related to shooting accuracy. Experiment 1 tests the shooting accuracy of two amateur basketball players after different delays between catching a pass and shooting the ball. Shots were taken from the three-point line (180 shots). All shots were recorded and analyzed for accuracy as a function of delay time, and the recordings were used to select stimuli varying in timing intervals for observers to view in Experiment 2. In Experiment 2, 24 observers each reviewed 17 video clips of the shots to test visual judgment of shooting-in-rhythm. The delay times ranged from 0.3 to 3.2 seconds, with a goal of having some of the shots taken too fast, some close to in rhythm, and some too slow. Observers rated if each shot occurs too fast, in rhythm slightly fast, in rhythm slightly slow, or too slow. In Experiment 1, shooters exhibited a significant cubic fit with better shooting performance in the middle of the timing distribution (1.2 sec optimal delay) between catching a pass and shooting. In Experiment, 2 observers reliably judged shots to be in rhythm centered at 1.1 ± 0.2 seconds, which matched the delay that leads to optimal performance for the shooters found in Experiment 1. The pattern of findings confirms and validates that there is a common “in rhythm” catch-to-shoot delay time of a little over 1 second that both optimizes shooter accuracy and is reliably recognized by observers.

ContributorsFlood, Cierra Elizabeth (Author) / McBeath, Michael (Thesis director) / Corbin, William (Committee member) / Department of Psychology (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132522-Thumbnail Image.png
Description
Recent findings support that facial musculature accounts for a form of phonetic sound symbolism. Yu, McBeath, and Glenberg (2019) found that, in both English words and Mandarin pinyin, words with the middle phoneme /i:/ (as in “gleam”) were rated as more positive than their paired words containing the phoneme /ʌ

Recent findings support that facial musculature accounts for a form of phonetic sound symbolism. Yu, McBeath, and Glenberg (2019) found that, in both English words and Mandarin pinyin, words with the middle phoneme /i:/ (as in “gleam”) were rated as more positive than their paired words containing the phoneme /ʌ/ (as in “glum”). The present study tested whether a second largely orthogonal dimension of vowel phoneme production (represented by the phonemes /æ/ vs /u/), is related to a second dimension perpendicular to emotional valence, arousal. Arousal was chosen because it is the second dimension of the Russell Circumplex Model of Affect. In phonetic similarity mappings, this second dimension is typically characterized by oral aperture size and larynx position, but it also appears to follow the continuum of consonance/dissonance. Our findings supported the hypothesis that one-syllable words with the center vowel phoneme /æ/ were reliably rated as more rousing, and less calming, than matched words with the center vowel phoneme /u/. These results extend the Yu, et al. findings regarding the potential contribution of facial musculature to sounds associated with the emotional dimension of arousal, and further confirm a model of sound symbolism related to emotional expression. These findings support that phonemes are not neutral basic units but rather illustrate an innate relationship between embodied emotional expression and speech production.
ContributorsGreenstein, Ely Conrad (Author) / McBeath, Michael (Thesis director) / Glenberg, Arthur (Committee member) / Patten, Kristopher (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
193426-Thumbnail Image.png
Description
Sound symbolism—the association between word sounds and meaning—has been shown to be an effective communication tool that promotes language comprehension and word learning. Much of the literature is constrained to investigating sound as it relates to physical characteristics (e.g. size or shape), and research has predominantly studied the phenomenon in

Sound symbolism—the association between word sounds and meaning—has been shown to be an effective communication tool that promotes language comprehension and word learning. Much of the literature is constrained to investigating sound as it relates to physical characteristics (e.g. size or shape), and research has predominantly studied the phenomenon in adults. The current study examined the sound symbolic wham-womb effect, which postulates that words with the /æ/ phoneme are associated with increased arousal while words with the /u/ phoneme are associated with little to no arousal. The effect was tested in both adults and children aged 5-7 years old using a word-to-scene matching task. Participants were presented with two pseudowords (differing only by their vowel phoneme: /æ/ or /u/; e.g. smad and smood) and two scenes depicting an animal in either a more arousing or less arousing situation. Participants were then asked to match which of the scenes fit one of the pseudowords. Results showed that the trial-by-trial performance for adults and children were significantly greater than chance, indicating that the wham-womb effect is exhibited in both adults and children. There was also a significant difference in performance between adults and children, with adults showing a more robust effect. This study provides the first empirical evidence that both children and adults link phonemes to arousal and that this effect may change across development.
ContributorsKuo, Jillian Elaine (Author) / Benitez, Viridiana (Thesis advisor) / McBeath, Michael (Committee member) / Scherer, Nancy (Committee member) / Arizona State University (Publisher)
Created2024
162335-Thumbnail Image.png
Description

Recent studies indicate that words containing /ӕ/ and /u/ vowel phonemes can be mapped onto the emotional dimension of arousal. Specifically, the wham-womb effect describes the inclination to associate words with /ӕ/ vowel-sounds (as in “wham”) with high-arousal emotions and words with /u/ vowel-sounds (as in “womb”) with low-arousal emotions.

Recent studies indicate that words containing /ӕ/ and /u/ vowel phonemes can be mapped onto the emotional dimension of arousal. Specifically, the wham-womb effect describes the inclination to associate words with /ӕ/ vowel-sounds (as in “wham”) with high-arousal emotions and words with /u/ vowel-sounds (as in “womb”) with low-arousal emotions. The objective of this study was to replicate the wham-womb effect using nonsense pseudowords and to test if findings extend with use of a novel methodology that includes verbal auditory and visual pictorial stimuli, which can eventually be used to test young children. We collected data from 99 undergraduate participants through an online survey. Participants heard pre-recorded pairs of monosyllabic pseudowords containing /ӕ/ or /u/ vowel phonemes and then matched individual pseudowords to illustrations portraying high or low arousal emotions. Two t-tests were conducted to analyze the size of the wham-womb effect across pseudowords and across participants, specifically the likelihood that /ӕ/ sounds are paired with high arousal images and /u/ sounds with low arousal images. Our findings robustly confirmed the wham-womb effect. Participants paired /ӕ/ words with high arousal emotion pictures and /u/ words with low arousal ones at a 73.2% rate with a large effect size. The wham-womb effect supports the idea that verbal acoustic signals tend to be tied to embodied facial musculature that is related to human emotions, which supports the adaptive value of sound symbolism in language evolution and development.

ContributorsZapp, Tatum (Author) / McBeath, Michael (Thesis director) / Benitez, Viridiana (Committee member) / Corbin, William (Committee member) / Yu, Shin-Phing (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2021-12
155315-Thumbnail Image.png
Description
In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in

In baseball, the difference between a win and loss can come down to a single call, such as when an umpire judges force outs at first base by typically comparing competing auditory and visual inputs of the ball-mitt sound and the foot-on-base sight. Yet, because the speed of sound in air only travels about 1100 feet per second, fans observing from several hundred feet away will receive auditory cues that are delayed a significant portion of a second, and thus conceivably could systematically differ in judgments compared to the nearby umpire. The current research examines two questions. 1. How reliably and with what biases do observers judge the order of visual versus auditory events? 2. Do observers making such order judgments from far away systematically compensate for delays due to the slow speed of sound? It is hypothesized that if any temporal bias occurs it is in the direction consistent with observers not accounting for the sound delay, such that increasing viewing distance will increase the bias to assume the sound occurred later. It was found that nearby observers are relatively accurate at judging if a sound occurred before or after a simple visual event (a flash), but exhibit a systematic bias to favor visual stimuli occurring first (by about 30 msec). In contrast, distant observers did not compensate for the delay of the speed of sound such that they systematically favored the visual cue occurring earlier as a function of viewing distance. When observers judged simple visual stimuli in motion relative to the same sound burst, the distance effect occurred as a function of the visual clarity of the ball arriving. In the baseball setting, using a large screen projection of baserunner, a diminished distance effect occurred due to the additional visual cues. In summary, observers generally do not account for the delay of sound due to distance.
ContributorsKrynen, R. Chandler (Author) / McBeath, Michael (Thesis advisor) / Homa, Donald (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2017