Matching Items (22)
Filtering by

Clear all filters

148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132909-Thumbnail Image.png
Description
This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used

This thesis details the design and construction of a torque-controlled robotic gripper for use with the Pheeno swarm robotics platform. This project required expertise from several fields of study including: robotic design, programming, rapid prototyping, and control theory. An electronic Inertial Measurement Unit and a DC Motor were both used along with 3D printed plastic components and an electronic motor control board to develop a functional open-loop controlled gripper for use in collective transportation experiments. Code was developed that effectively acquired and filtered rate of rotation data alongside other code that allows for straightforward control of the DC motor through experimentally derived relationships between the voltage applied to the DC motor and the torque output of the DC motor. Additionally, several versions of the physical components are described through their development.
ContributorsMohr, Brennan (Author) / Berman, Spring (Thesis director) / Ren, Yi (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School for Engineering of Matter,Transport & Enrgy (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
158114-Thumbnail Image.png
Description
Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to hel

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm.
ContributorsDye, Michaela (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
171564-Thumbnail Image.png
Description
There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several

There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several applications for wearable sensor networks presented in this paper. The study will also present a motion capture system using inertial measurement units (IMUs) and a pressure-sensing insole with a control system for gait assistance using wearable sensors. This presentation will provide details on the implementation and calibration of the pressure-sensitive insole, the IMU-based motion capture system, as well as the hip exoskeleton robot. Furthermore, the estimation of the Ground Reaction Force (GRF) from the insole design and implementation of the motion tracking using quaternion will be discussed in this document.
ContributorsLi, Xunguang (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2022
190848-Thumbnail Image.png
Description
This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human

This work endeavors to lay a solid foundation for the exploration and the considerations of exoskeletons, exosuits, and medical devices concerning proprioceptive feedback. This investigation is situated at the nexus of engineering, neuroscience, and rehabilitation medicine, striving to cultivate a holistic understanding of how mechanical augmentation, interfaced synergistically with human proprioception, can foster enhanced mobility and safety. This is especially pertinent for individuals with compromised motor functions.British Neurologist Oliver Wolf Sacks in 1985 published “The Man who Mistook His Wife for a Hat” a series of his most memorable neurological case describing the brain's strangest pathways. One of these cases is “The Disembodied Lady”, Christina a 27-year-old woman that lost entirely the sense of proprioception due to polyneuropathy. This caused her to not be able to control her body, and she declares that “I feel the wind on my arms and face, and then I know, faintly, I have arms and a face. It’s not the real thing, but it’s something—it lifts this horrible, dead veil for a while. ” Finally, she was able to control her body using vision alone. Dr. Sacks introduced, for the first time, the importance of proprioception, as the sense of position of body parts relative to other parts of the body, to western culture. This document’s mission is to identify unexplored concepts in the literature regarding exoskeletons, wearables and assistive technology and a user’s proprioception, embodiment and utilization when wearing devices. Dr. Philipp Beckerle suggests the need to research the connections between wearable hardware and human sense of proprioception. He also emphasizes the need for functional assessment protocols for wearables devices and the role of embodiment. He criticizes the current commercially available upper-limb prostheses since they only restore limited functions and therefore impede embodiment. This document’s goal is to identify operative solutions through the adaptation of existing technologies and to use effective solutions to improve the quality of life of people suffering from pathologies or traumatic injuries.
ContributorsVignola, Claudio (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / McDaniels, Troy (Committee member) / Arizona State University (Publisher)
Created2023
171857-Thumbnail Image.png
Description
Fine control of standing postural balance is essential for completing various tasks in daily activities, which might be compromised when interacting with dynamically challenging environments (e.g., moving ground). Among various biofeedback to improve postural balance control, vibrotactile feedback has an advantage of providing supplementary information about balance control without disturbing

Fine control of standing postural balance is essential for completing various tasks in daily activities, which might be compromised when interacting with dynamically challenging environments (e.g., moving ground). Among various biofeedback to improve postural balance control, vibrotactile feedback has an advantage of providing supplementary information about balance control without disturbing other core functions (e.g., seeing and hearing). This paper investigated the effectiveness of a waist vibrotactile feedback device to improve postural control during standing balance on a dynamically moving ground simulated by a robotic balance platform. Four vibration motors of the waist device applied vibration feedback in the anterior-posterior and medio-lateral direction based on the 2-dimensional sway angle, measured by an inertia measurement unit. Experimental results with 15 healthy participants demonstrated that the waist vibrotactile feedback is effective in improving postural control, evidenced by improvements in center-of-mass and center-of-pressure stability measures. In addition, this study confirmed the effectiveness of the waist vibrotactile feedback in improving standing balance control even under muscle fatigue induced by lower body exercise. The study further confirmed that the waist feedback is more effective in people with lower baseline balance performance in both normal and fatigue conditions.
ContributorsJo, Kwanghee (Author) / Lee, Hyunglae (Thesis advisor) / Sugar, Thomas (Committee member) / Peterson, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
Description

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues

Cornhole, traditionally seen as tailgate entertainment, has rapidly risen in popularity since the launching of the American Cornhole League in 2016. However, it lacks robust quality control over large tournaments, since many of the matches are scored and refereed by the players themselves. In the past, there have been issues where entire competition brackets have had to be scrapped and replayed because scores were not handled correctly. The sport is in need of a supplementary scoring solution that can provide quality control and accuracy over large matches where there aren’t enough referees present to score games. Drawing from the ACL regulations as well as personal experience and testimony from ACL Pro players, a list of requirements was generated for a potential automatic scoring system. Then, a market analysis of existing scoring solutions was done, and it found that there are no solutions on the market that can automatically score a cornhole game. Using the problem requirements and previous attempts to solve the scoring problem, a list of concepts was generated and evaluated against each other to determine which scoring system design should be developed. After determining that the chosen concept was the best way to approach the problem, the problem requirements and cornhole rules were further refined into a set of physical assumptions and constraints about the game itself. This informed the choice, structure, and implementation of the algorithms that score the bags. The prototype concept was tested on their own, and areas of improvement were found. Lastly, based on the results of the tests and what was learned from the engineering process, a roadmap was set out for the future development of the automatic scoring system into a full, market-ready product.

ContributorsGillespie, Reagan (Author) / Sugar, Thomas (Thesis director) / Li, Baoxin (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
168398-Thumbnail Image.png
Description
With the extensive technological progress made in the areas of drives, sensors and processing, exoskeletons and other wearable devices have become more feasible. However, the stringent requirements in regards to size and weight continue to exert a strong influence on the system-wide design of these devices and present many obstacles

With the extensive technological progress made in the areas of drives, sensors and processing, exoskeletons and other wearable devices have become more feasible. However, the stringent requirements in regards to size and weight continue to exert a strong influence on the system-wide design of these devices and present many obstacles to a successful solution. On the other hand, while the area of controls has seen a significant amount of progress, there also remains a large potential for improvements. This dissertation approaches the design and control of wearable devices from a systems perspective and provides a framework to successfully overcome the often-encountered obstacles with optimal solutions. The electronics, drive and control system design for the HeSA hip exoskeleton project and APEx hip exoskeleton project are presented as examples of how this framework is used to design wearable devices. In the area of control algorithms, a real-time implementation of the Fast Fourier Transform (FFT) is presented as an alternative approach to extracting amplitude and frequency information of a time varying signal. In comparison to the peak search method (PSM), the FFT allows extracting basic gait signal information at a faster rate because time windows can be chosen to be less than the fundamental gait frequency. The FFT is implemented on a 16-bit processor and the results show the real-time detection of amplitude and frequency coefficients at an update rate of 50Hz. Finally, a novel neural networks based approach to detecting human gait activities is presented. Existing neural networks often require vast amounts of data along with significant computer resources. Using Neural Ordinary Differential Equations (Neural ODEs) it is possible to distinguish between seven different daily activities using a significantly smaller data set, lower system resources and a time window of only 0.1 seconds.
ContributorsBoehler, Alexander (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
187805-Thumbnail Image.png
Description
In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for exoskeletons have ranged from devices as simple spring-loaded systems to using sensors such as electromyography (EMG). Despite EMGs being very common, force sensing resistors (FSRs) can be used instead. There are multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for either medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This thesis is a continuation of my ASU Barrett honors thesis, Upper-Extremity Exoskeleton. While working on my honors thesis, I helped develop a design for an upper extremity exoskeleton based on the Wilmer orthosis design for Mayo Clinic. Building upon the design of an orthosis, for the master’s thesis, I developed an FSR control system that is designed using a Wheatstone bridge circuit that can provide a clean reliable signal as compared to the current EMG setup.
ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis advisor) / Aukes, Daniel (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2023
187626-Thumbnail Image.png
Description
National Airspace Systems (NAS) are complex cyber-physical systems that require swift air traffic management (ATM) to ensure flight safety and efficiency. With the surging demand for air travel and the increasing intricacy of aviation systems, the need for advanced technologies to support air traffic management and air traffic control (ATC)

National Airspace Systems (NAS) are complex cyber-physical systems that require swift air traffic management (ATM) to ensure flight safety and efficiency. With the surging demand for air travel and the increasing intricacy of aviation systems, the need for advanced technologies to support air traffic management and air traffic control (ATC) service has become more crucial than ever. Data-driven models or artificial intelligence (AI) have been conceptually investigated by various parties and shown immense potential, especially when provided with a vast volume of real-world data. These data include traffic information, weather contours, operational reports, terrain information, flight procedures, and aviation regulations. Data-driven models learn from historical experiences and observations and provide expeditious recommendations and decision support for various operation tasks, directly contributing to the digital transformation in aviation. This dissertation reports several research studies covering different aspects of air traffic management and ATC service utilizing data-driven modeling, which are validated using real-world big data (flight tracks, flight events, convective weather, workload probes). These studies encompass a range of topics, including trajectory recommendations, weather studies, landing operations, and aviation human factors. Specifically, the topics explored are (i) trajectory recommendations under weather conditions, which examine the impact of convective weather on last on-file flight plans and provide calibrated trajectories based on convective weather; (ii) multi-aircraft trajectory predictions, which study the intention of multiple mid-air aircraft in the near-terminal airspace and provide trajectory predictions; (iii) flight scheduling operations, which involve probabilistic machine learning-enhanced optimization algorithms for robust and efficient aircraft landing sequencing; (iv) aviation human factors, which predict air traffic controller workload level from flight traffic data with conformalized graph neural network. The uncertainties associated with these studies are given special attention and addressed through Bayesian/probabilistic machine learning. Finally, discussions on high-level AI-enabled ATM research directions are provided, hoping to extend the proposed studies in the future. This dissertation demonstrates that data-driven modeling has great potential for aviation digital twins, revolutionizing the aviation decision-making process and enhancing the safety and efficiency of ATM. Moreover, these research directions are not merely add-ons to existing aviation practices but also contribute to the future of transportation, particularly in the development of autonomous systems.
ContributorsPang, Yutian (Author) / Liu, Yongming (Thesis advisor) / Yan, Hao (Committee member) / Zhuang, Houlong (Committee member) / Marvi, Hamid (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2023