Matching Items (24)
Filtering by

Clear all filters

151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
152146-Thumbnail Image.png
Description
Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost

Human breath is a concoction of thousands of compounds having in it a breath-print of physiological processes in the body. Though breath provides a non-invasive and easy to handle biological fluid, its analysis for clinical diagnosis is not very common. Partly the reason for this absence is unavailability of cost effective and convenient tools for such analysis. Scientific literature is full of novel sensor ideas but it is challenging to develop a working device, which are few. These challenges include trace level detection, presence of hundreds of interfering compounds, excessive humidity, different sampling regulations and personal variability. To meet these challenges as well as deliver a low cost solution, optical sensors based on specific colorimetric chemical reactions on mesoporous membranes have been developed. Sensor hardware utilizing cost effective and ubiquitously available light source (LED) and detector (webcam/photo diodes) has been developed and optimized for sensitive detection. Sample conditioning mouthpiece suitable for portable sensors is developed and integrated. The sensors are capable of communication with mobile phones realizing the idea of m-health for easy personal health monitoring in free living conditions. Nitric oxide and Acetone are chosen as analytes of interest. Nitric oxide levels in the breath correlate with lung inflammation which makes it useful for asthma management. Acetone levels increase during ketosis resulting from fat metabolism in the body. Monitoring breath acetone thus provides useful information to people with type1 diabetes, epileptic children on ketogenic diets and people following fitness plans for weight loss.
ContributorsPrabhakar, Amlendu (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2013
151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
ContributorsMalotte, Christopher (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150573-Thumbnail Image.png
Description
This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The

This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The purpose for conducting this research is to ensure that the correct Ferrite-Austenite phase balance along with the correct welding procedures are used in the creation of reactor cores for new construction nuclear power generation stations. In this project the effects of Lincoln Electrics ER-2209 GMAW wire are studied. Suggestions and improvements to the welding process are then proposed in order to increase the weldability, strength, gas selection, and ferrite count. The weldability will be measured using X-Ray photography in order to determine if any inclusions, lack of fusion, or voids are found post welding, along with welder feedback. The ferritic point count method in accordance with ASTM A562-08, is employed so that the amount of ferrite and austenite can be calculated in the same manor that is currently being used in industry. These will then be correlated to the tensile strength and impact toughness in the heat-affected zone (HAZ) of the weld based on the ASTM A923 testing method.
ContributorsCarter, Roger (Author) / Rogers, Bradley (Thesis advisor) / Gintz, Jerry (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2012
158114-Thumbnail Image.png
Description
Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to hel

Suction stabilized floats have been implemented into a variety of applications such as supporting wind turbines in off-shore wind farms and for stabilizing cargo ships. This thesis proposes an alternative use for the technology in creating a system of suction stabilized floats equipped with real time location modules to help first responders establish a localized coordinate system to assist in rescues. The floats create a stabilized platform for each anchor module due to the inverse slack tank effect established by the inner water chamber. The design of the float has also been proven to be stable in most cases of amplitudes and frequencies ranging from 0 to 100 except for when the frequency ranges from 23 to 60 Hz for almost all values of the amplitude. The modules in the system form a coordinate grid based off the anchors that can track the location of a tag module within the range of the system using ultra-wideband communications. This method of location identification allows responders to use the system in GPS denied environments. The system can be accessed through an Android app with Bluetooth communications in close ranges or through internet of things (IoT) using a module as a listener, a Raspberry Pi and an internet source. The system has proven to identify the location of the tag in moderate ranges with an approximate accuracy of the tag location being 15 cm.
ContributorsDye, Michaela (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
189218-Thumbnail Image.png
Description
Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level

Solar photovoltaic (PV) generation has seen significant growth in 2021, with an increase of around 22% and exceeding 1000 TWh. However, this has also led to reliability and durability issues, particularly potential induced degradation (PID), which can reduce module output by up to 30%. This study uses cell- and module-level analysis to investigate the impact of superstrate, encapsulant, and substrate on PID.The influence of different substrates and encapsulants is studied using one-cell modules, showing that substrates with poor water-blocking properties can worsen PID, and encapsulants with lower volumetric resistance can conduct easily under damp conditions, enabling PID mechanisms (results show maximum degradation of 9%). Applying an anti-soiling coating on the front glass (superstrate) reduces PID by nearly 53%. Typical superstrates have sodium which accelerates the PID process, and therefore, using such coatings can lessen the PID problem. At the module level, the study examines the influence of weakened interface adhesion strengths in traditional Glass-Backsheet (GB) and emerging Glass-Glass (GG) (primarily bifacial modules) constructions. The findings show nearly 64% more power degradation in GG modules than in GB. Moreover, the current methods for detecting PID use new modules, which can give inaccurate information instead of DH-stressed modules for PID testing, as done in this work. A comprehensive PID susceptibility analysis for multiple fresh bifacial constructions shows significant degradation from 20 to 50% in various constructions. The presence of glass as the substrate exacerbates the PID problem due to more ionic activity available from the two glass sides. Recovery experiments are also conducted to understand the extent of the PID issue. Overall, this study identifies, studies, and explains the impact of superstrate, substrate, and encapsulant on the underlying PID mechanisms. Various pre- and post-stress characterization tests, including light and dark current-voltage (I-V) tests, electroluminescence (EL) imaging, infrared (IR) imaging, and UV fluorescence (UVF) imaging, are used to evaluate the findings. This study is significant as it provides insights into the PID issues in solar PV systems, which can help improve their performance and reliability.
ContributorsMahmood, Farrukh ibne (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Oh, Jaewon (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2023
156743-Thumbnail Image.png
Description
Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive

Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately $Qi = 170$. The resonator quality factor, approximately $Qr = 23$, is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1MHz. In our experiments with this first generation device, we measure the response of the SNSPD devices to changes in thermal and optical power in both the time domain and the frequency domain. Additionally, we explore the non-linear response of the devices to an applied bias current. For these nanowires, we find that the band-gap energy is $\Delta_0 \approx 1.1$meV and that the density of states at the Fermi energy is $N_0 \sim 10^{10}$/eV/$\mu$m$^3$.

We present the results of experimentation with a superconducting nanowire that can be operated in two detection modes: i) as a kinetic inductance detector (KID) or ii) as a single photon detector (SPD). When operated as a KID mode in linear mode, the detectors are AC-biased with tones at their resonant frequencies of 45.85 and 91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector. We show that a high AC bias in KID mode is inferior for photon counting experiments compared to operation in a DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias. We find a photon count rate of $\Gamma_{KID} = 150~$photons/s/mA in a critically biased KID mode and a photon count rate of $\Gamma_{SPD} = 10^6~$photons/s/mA in SPD mode.

This dissertation additionally presents simulations of a DC-biased, frequency-multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice, and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of $>5$MHz. This readout could enable a 10000-pixel array for astronomy or quantum communications. Finally, we present a prototype array design based on lumped element components. An early implementation of the array is presented with 16 pixels in the frequency range of 74.9 to 161MHz. We find good agreement between simulation and experimental data in both the time domain and the frequency domain and present modifications for future versions of the array.
ContributorsSchroeder, Edward, Ph.D (Author) / Mauskopf, Philip (Thesis advisor) / Chamberlin, Ralph (Committee member) / Lindsay, Stuart (Committee member) / Newman, Nathan (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2018
153807-Thumbnail Image.png
Description
Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust

Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust and fail proof signal processing and machine learning modules which operate on the raw EEG signals and estimate the current thought of the user.

In this thesis, several techniques used to perform EEG signal pre-processing, feature extraction and signal classification have been discussed, implemented, validated and verified; efficient supervised machine learning models, for the EEG motor imagery signal classification are identified. To further improve the performance of system unsupervised feature learning techniques have been investigated by pre-training the Deep Learning models. Use of pre-training stacked autoencoders have been proposed to solve the problems caused by random initialization of weights in neural networks.

Motor Imagery (imaginary hand and leg movements) signals are acquire using the Emotiv EEG headset. Different kinds of features like mean signal, band powers, RMS of the signal have been extracted and supplied to the machine learning (ML) stage, wherein, several ML techniques like LDA, KNN, SVM, Logistic regression and Neural Networks are applied and validated. During the validation phase the performances of various techniques are compared and some important observations are reported. Further, deep Learning techniques like autoencoding have been used to perform unsupervised feature learning. The reliability of the features is analyzed by performing classification by using the ML techniques mentioned earlier. The performance of the neural networks has been further improved by pre-training the network in an unsupervised fashion using stacked autoencoders and supplying the stacked autoencoders’ network parameters as initial parameters to the neural network. All the findings in this research, during each phase (pre-processing, feature extraction, classification) are directly relevant and can be used by the BCI research community for building motor imagery based BCI applications.

Additionally, this thesis attempts to develop, test, and compare the performance of an alternative method for classifying human driving behavior. This thesis proposes the use of driver affective states to know the driving behavior. The purpose of this part of the thesis was to classify the EEG data collected from several subjects while driving simulated vehicle and compare the classification results with those obtained by classifying the driving behavior using vehicle parameters collected simultaneously from all the subjects. The objective here is to see if the drivers’ mental state is reflected in his driving behavior.
ContributorsManchala, Vamsi Krishna (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2015
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015