Matching Items (693)
Filtering by

Clear all filters

Description
Mechanical design can be intimidating, especially for someone new to the discipline because of the complexity and the limited number of resources available. The overarching goal of this project is to help mechanically curious individuals by creating an open-source 3D printed clock with detailed information and explanations for how the

Mechanical design can be intimidating, especially for someone new to the discipline because of the complexity and the limited number of resources available. The overarching goal of this project is to help mechanically curious individuals by creating an open-source 3D printed clock with detailed information and explanations for how the systems work and are designed. This increase in available knowledge will allow people to educate themselves by following or recreating the design process and, perhaps, inspire others to continue the learning process and study STEM.
ContributorsBrody, Harris (Author) / Davis, Ian (Co-author) / Frank, Daniel (Thesis director) / Pillalamarri, Pavan (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2024-05
Description
Mechanical design can be intimidating, especially for someone new to the discipline because of the complexity and the limited number of resources available. The overarching goal of this project is to help mechanically curious individuals by creating an open-source 3D printed clock with detailed information and explanations for how the

Mechanical design can be intimidating, especially for someone new to the discipline because of the complexity and the limited number of resources available. The overarching goal of this project is to help mechanically curious individuals by creating an open-source 3D printed clock with detailed information and explanations for how the systems work and are designed. This increase in available knowledge will allow people to educate themselves by following or recreating the design process and, perhaps, inspire others to continue the learning process and study STEM.
ContributorsDavis, Ian (Author) / Brody, Harris (Co-author) / Frank, Daniel (Thesis director) / Pillalamarri, Pavan (Committee member) / Barrett, The Honors College (Contributor)
Created2024-05
191490-Thumbnail Image.png
Description
With the demand growing for more sustainable forms of energy in replacement of fossil fuels, a major obstacle arises in the end-of life solar modules that are disposed of in landfills. Aside from the hazardous materials, silicon solar modules contain valuable and scarce materials such as silver. Silver is used

With the demand growing for more sustainable forms of energy in replacement of fossil fuels, a major obstacle arises in the end-of life solar modules that are disposed of in landfills. Aside from the hazardous materials, silicon solar modules contain valuable and scarce materials such as silver. Silver is used in many industries and many applications therefore the recycling and recovering of it is financially beneficial. The purpose of this research was to achieve high purity and recovery of silver using hydrofluoric acid. The following work presents the feasibility of silver recovery through the process of leaching and electrowinning by examining the percent recovery and cathodic coulombic efficiency, followed by a chemical analysis to determine the purity. Varying conditions in leaching and electrowinning parameters are conducted in a synthetic solution to determine the effect on silver recovery and cathodic coulombic efficiency. It was determined that the silver recovery was dependent on the applied potential, system configuration and time. The system is capable of recovery rates of over 95% at -1 V. The system is further tested on solar cells to prove that silver can be recovered. There was over 99% purity from the experiments conducted in synthetic solution and from solar cells. Additionally, a circular chemistry is proposed that allows the reuse of hydrofluoric acid for leaching and electrowinning.
ContributorsChen, Theresa (Author) / Tao, Meng (Thesis advisor) / Deng, Shuguang (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2024
190990-Thumbnail Image.png
Description
This thesis is developed in the context of biomanufacturing of modern products that have the following properties: require short design to manufacturing time, they have high variability due to a high desired level of patient personalization, and, as a result, may be manufactured in low volumes. This area at the

This thesis is developed in the context of biomanufacturing of modern products that have the following properties: require short design to manufacturing time, they have high variability due to a high desired level of patient personalization, and, as a result, may be manufactured in low volumes. This area at the intersection of therapeutics and biomanufacturing has become increasingly important: (i) a huge push toward the design of new RNA nanoparticles has revolutionized the science of vaccines due to the COVID-19 pandemic; (ii) while the technology to produce personalized cancer medications is available, efficient design and operation of manufacturing systems is not yet agreed upon. In this work, the focus is on operations research methodologies that can support faster design of novel products, specifically RNA; and methods for the enabling of personalization in biomanufacturing, and will specifically look at the problem of cancer therapy manufacturing. Across both areas, methods are presented attempting to embed pre-existing knowledge (e.g., constraints characterizing good molecules, comparison between structures) as well as learn problem structure (e.g., the landscape of the rewards function while synthesizing the control for a single use bioreactor). This thesis produced three key outcomes: (i) ExpertRNA for the prediction of the structure of an RNA molecule given a sequence. RNA structure is fundamental in determining its function. Therefore, having efficient tools for such prediction can make all the difference for a scientist trying to understand optimal molecule configuration. For the first time, the algorithm allows expert evaluation in the loop to judge the partial predictions that the tool produces; (ii) BioMAN, a discrete event simulation tool for the study of single-use biomanufacturing of personalized cancer therapies. The discrete event simulation engine was designed tailored to handle the efficient scheduling of many parallel events which is cause by the presence of single use resources. This is the first simulator of this type for individual therapies; (iii) Part-MCTS, a novel sequential decision-making algorithm to support the control of single use systems. This tool integrates for the first-time simulation, monte-carlo tree search and optimal computing budget allocation for managing the computational effort.
ContributorsLiu, Menghan (Author) / Pedrielli, Giulia (Thesis advisor) / Bertsekas, Dimitri (Committee member) / Pan, Rong (Committee member) / Sulc, Petr (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2023
Description
Ulaanbaatar, Mongolia is one of the world’s coldest capital cities with roughly 1.5 million residents. About fifty percent of the city’s residents are off the electrical grid and millions continue to live nomadic lifestyles, raising livestock for food. Problematically, residents often turn to raw coal - Mongolia’s largest export -

Ulaanbaatar, Mongolia is one of the world’s coldest capital cities with roughly 1.5 million residents. About fifty percent of the city’s residents are off the electrical grid and millions continue to live nomadic lifestyles, raising livestock for food. Problematically, residents often turn to raw coal - Mongolia’s largest export - as a means to cook food and stay warm. Project Koyash is a philanthropic engineering initiative that was founded in the Arizona State University Program Engineering Projects in Community Service (EPICS) to combat the air quality crisis plaguing the ger districts of Ulaanbaatar. Koyash has already deployed 13 fully functional and autonomous units consisting of a solar powered air filtration system in Ulaanbaatar. Koyash innovated a solution of solar panels, air filters, batteries, inverters, PCB Arduinos, and other necessary components for providing crucial humanitarian services. The team is working to send more units and develop a local supply chain for the systems. This thesis project explores the development of Koyash, assesses the human health implications of air pollution, and reflects on the entire process.
ContributorsYavari, Bryan (Author) / Hartwell, Leland (Thesis director) / Schoepf, Jared (Thesis director) / Diddle, Julianna (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2024-05
149709-Thumbnail Image.png
Description
The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire

The price based marketplace has dominated the construction industry. The majority of owners use price based practices of management (expectation and decision making, control, direction, and inspection.) The price based/management and control paradigm has not worked. Clients have now been moving toward the best value environment (hire contractors who know what they are doing, who preplan, and manage and minimize risk and deviation.) Owners are trying to move from client direction and control to hiring an expert and allowing them to do the quality control/risk management. The movement of environments changes the paradigm for the contractors from a reactive to a proactive, from a bureaucratic
on-accountable to an accountable position, from a relationship based
on-measuring to a measuring entity, and to a contractor who manages and minimizes the risk that they do not control. Years of price based practices have caused poor quality and low performance in the construction industry. This research identifies what is a best value contractor or vendor, what factors make up a best value vendor, and the methodology to transform a vendor to a best value vendor. It will use deductive logic, a case study to confirm the logic and the proposed methodology.
ContributorsPauli, Michele (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
149660-Thumbnail Image.png
Description
Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.
ContributorsArvay, Adam (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Liang, Yong (Committee member) / Subach, James (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150372-Thumbnail Image.png
Description
As global competition continues to grow more disruptive, organizational change is an ever-present reality that affects companies in all industries at both the operational and strategic level. Organizational change capabilities have become a necessary aspect of existence for organizations in all industries worldwide. Research suggests that more than half of

As global competition continues to grow more disruptive, organizational change is an ever-present reality that affects companies in all industries at both the operational and strategic level. Organizational change capabilities have become a necessary aspect of existence for organizations in all industries worldwide. Research suggests that more than half of all organizational change efforts fail to achieve their original intended results, with some studies quoting failure rates as high as 70 percent. Exasperating this problem is the fact that no single change methodology has been universally accepted. This thesis examines two aspect of organizational change: the implementation of tactical and strategic initiatives, primarily focusing on successful tactical implementation techniques. This research proposed that tactical issues typically dominate the focus of change agents and recipients alike, often to the detriment of strategic level initiatives that are vital to the overall value and success of the organizational change effort. The Delphi method was employed to develop a tool to facilitate the initial implementation of organizational change such that tactical barriers were minimized and available resources for strategic initiatives were maximized. Feedback from two expert groups of change agents and change facilitators was solicited to develop the tool and evaluate its impact. Preliminary pilot testing of the tool confirmed the proposal and successfully served to minimize tactical barriers to organizational change.
ContributorsLines, Brian (Author) / Sullivan, Kenneth T. (Thesis advisor) / Badger, William (Committee member) / Kashiwagi, Dean (Committee member) / Arizona State University (Publisher)
Created2011
150346-Thumbnail Image.png
Description
Dye sensitized solar cells (DSSCs) are the third generation solar cells expected to outperform the first two generations of solar cells with their advantages of comparative higher efficiency and lower manufacturing costs. The manufacturing cost of Dye sensitized solar cells is one fifth of the conventional silicon solar cell. However,

Dye sensitized solar cells (DSSCs) are the third generation solar cells expected to outperform the first two generations of solar cells with their advantages of comparative higher efficiency and lower manufacturing costs. The manufacturing cost of Dye sensitized solar cells is one fifth of the conventional silicon solar cell. However, DSSCs have problems of low conversion efficiency, stability and reliability. Some effective approaches are required to improve their performance. This paper projects the work related to assessment and verification of the repeatability of the semi-automated fabrication process. Changes were introduced in to the fabrication process to enhance the efficiency and stability. The sealant step in the fabrication process was remodeled to a newer version with an improvement in efficiency from 11% to 11.8%. Sputtering was performed on counter electrode in 30 seconds intervals. Cells were fabricated to assess the performance & time dependent characteristics from EIS experiments. Series resistance increased three times in sputtered Pt electrode as compared to standard platinum electrode. This resulted in the degradation of conductive surface on glass electrode due to heavy bombardment of ions. The second phase of the project work relates to the incorporation of SWCNT on the TiO2 electrode and its effect on the cell efficiency. Different weight loadings (0.1 wt %, 0.2 wt%, 0.4 wt %) of SWCNTs were prepared and mixed with the commercial TiO2 paste and ethanol solvent. The TiO2-SWCNT layer was coated on the electrode using screen-printing technique. Both open circuit voltage and photocurrent were found to have measurable dependence on the TiO2 layer loading. Photo voltage ranged from ~0.73 V to ~0.43 V and photocurrent from ~8 to ~33 mA depending on weight percent loading. This behavior is due to aggregation of particles and most TiO2 aggregate particles are not connected to SWCNT. Transparency loss was observed leading to saturation in the photo current and limiting the light absorption within the TiO2 film.
ContributorsKinhal, Kartik (Author) / Munukutla, Lakshmi V (Thesis advisor) / Subach, James (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2011