Matching Items (22)
Filtering by

Clear all filters

151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
ContributorsMalotte, Christopher (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
150573-Thumbnail Image.png
Description
This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The

This report presents the effects and analysis of the effects of Pulsed-Gas Metal Arc Welding's (P-GMAW) on Lean Duplex stainless steel. Although the welding of Duplex and Super Duplex Stainless steels have been well documented in both the laboratory and construction industry, the use of Lean Duplex has not. The purpose for conducting this research is to ensure that the correct Ferrite-Austenite phase balance along with the correct welding procedures are used in the creation of reactor cores for new construction nuclear power generation stations. In this project the effects of Lincoln Electrics ER-2209 GMAW wire are studied. Suggestions and improvements to the welding process are then proposed in order to increase the weldability, strength, gas selection, and ferrite count. The weldability will be measured using X-Ray photography in order to determine if any inclusions, lack of fusion, or voids are found post welding, along with welder feedback. The ferritic point count method in accordance with ASTM A562-08, is employed so that the amount of ferrite and austenite can be calculated in the same manor that is currently being used in industry. These will then be correlated to the tensile strength and impact toughness in the heat-affected zone (HAZ) of the weld based on the ASTM A923 testing method.
ContributorsCarter, Roger (Author) / Rogers, Bradley (Thesis advisor) / Gintz, Jerry (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2012
153807-Thumbnail Image.png
Description
Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust

Brain Computer Interfaces are becoming the next generation controllers not only in the medical devices for disabled individuals but also in the gaming and entertainment industries. In order to build an effective Brain Computer Interface, which accurately translates the user thoughts into machine commands, it is important to have robust and fail proof signal processing and machine learning modules which operate on the raw EEG signals and estimate the current thought of the user.

In this thesis, several techniques used to perform EEG signal pre-processing, feature extraction and signal classification have been discussed, implemented, validated and verified; efficient supervised machine learning models, for the EEG motor imagery signal classification are identified. To further improve the performance of system unsupervised feature learning techniques have been investigated by pre-training the Deep Learning models. Use of pre-training stacked autoencoders have been proposed to solve the problems caused by random initialization of weights in neural networks.

Motor Imagery (imaginary hand and leg movements) signals are acquire using the Emotiv EEG headset. Different kinds of features like mean signal, band powers, RMS of the signal have been extracted and supplied to the machine learning (ML) stage, wherein, several ML techniques like LDA, KNN, SVM, Logistic regression and Neural Networks are applied and validated. During the validation phase the performances of various techniques are compared and some important observations are reported. Further, deep Learning techniques like autoencoding have been used to perform unsupervised feature learning. The reliability of the features is analyzed by performing classification by using the ML techniques mentioned earlier. The performance of the neural networks has been further improved by pre-training the network in an unsupervised fashion using stacked autoencoders and supplying the stacked autoencoders’ network parameters as initial parameters to the neural network. All the findings in this research, during each phase (pre-processing, feature extraction, classification) are directly relevant and can be used by the BCI research community for building motor imagery based BCI applications.

Additionally, this thesis attempts to develop, test, and compare the performance of an alternative method for classifying human driving behavior. This thesis proposes the use of driver affective states to know the driving behavior. The purpose of this part of the thesis was to classify the EEG data collected from several subjects while driving simulated vehicle and compare the classification results with those obtained by classifying the driving behavior using vehicle parameters collected simultaneously from all the subjects. The objective here is to see if the drivers’ mental state is reflected in his driving behavior.
ContributorsManchala, Vamsi Krishna (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2015
154078-Thumbnail Image.png
Description
Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the

Photovoltaic (PV) module degradation is a well-known issue, however understanding the mechanistic pathways in which modules degrade is still a major task for the PV industry. In order to study the mechanisms responsible for PV module degradation, the effects of these degradation mechanisms must be quantitatively measured to determine the severity of each degradation mode. In this thesis multiple modules from three climate zones (Arizona, California and Colorado) were investigated for a single module glass/polymer construction (Siemens M55) to determine the degree to which they had degraded, and the main factors that contributed to that degradation. To explain the loss in power, various nondestructive and destructive techniques were used to indicate possible causes of loss in performance. This is a two-part thesis. Part 1 presents non-destructive test results and analysis and Part 2 presents destructive test results and analysis.
ContributorsChicca, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2015
154407-Thumbnail Image.png
Description
With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy,

With the need to address the world's growing energy demand, many new

alternative and renewable energy sources are being researched and developed. Many

of these technologies are in their infancy, still being too inefficient or too costly to

implement on a large scale. This list of alternative energies include biofuels,

geothermal power, solar energy, wind energy and hydroelectric power. This thesis

focuses on developing a concentrating solar thermal energy unit for the application

of an on-demand hot water system with phase change material. This system already

has a prototype constructed and needs refinement in several areas in order to

increase its efficiency to determine if the system could ever reach a point of

feasibility in a residential application. Having put additional control refining

systems on the solar water heat collector, it can be deduced that the efficiency has

increased. However, due to limited testing and analysis it is undetermined just how

much the efficiency of the system has increased. At minimum, the capabilities of the

research platform have dramatically increased, allowing future research to more

accurately study the dynamics of the system as well as conduct studies in more

targeted areas of engineering. In this aspect, the thesis was successful.
ContributorsDonovan, Benjamin (Author) / Rajadas, John (Thesis advisor) / Kannan, Arunachala (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
155103-Thumbnail Image.png
Description
The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV

The primary goal of this thesis work is to determine the activation energy for encapsulant browning reaction of photovoltaic (PV) modules using outdoor field degradation data and indoor accelerated degradation data. For the outdoor field data, six PV modules fielded in Arizona (hot climate) over 21 years and four PV modules fielded in New York (cold climate) over 18 years have been analyzed. All the ten modules were manufactured by the same manufacturer with glass/EVA/cell/EVA/back sheet construction. The activation energy for the encapsulant browning is calculated using the degradation rates of short-circuit current (Isc, the response parameter), weather data (temperature, humidity, and UV, the stress parameters) and different empirical rate models such as Arrhenius, Peck, Klinger and modified Peck models. For the indoor accelerated data, three sets of mini-modules with the same construction/manufacturer as that of the outdoor fielded modules were subjected indoor accelerated weathering stress and the test data were analyzed. The indoor accelerated test was carried out in a weathering chamber at the chamber temperature of 20°C, chamber relative humidity of 65%, and irradiance of 1 W/m2 at 340nm using a xenon arc lamp. Typically, to obtain activation energy, the test samples are stressed at two (or more) temperatures in two (or more) chambers. However, in this work, it has been attempted to do the acceleration testing of eight mini-modules at multiple temperatures using a single chamber. Multiple temperatures in a single chamber were obtained using thermal insulators on the back of the mini-modules. Depending on the thickness of the thermal insulators with constant solar gain from the xenon lamp, different temperatures on the test samples were achieved using a single weathering chamber. The Isc loss and temperature of the mini-modules were continuously monitored using a data logger. Also, the mini-modules were taken out every two weeks and various characterization tests such as IV, QE, UV fluorescence and reflectance were carried out. Activation energy from the indoor accelerated tests was calculated using the short circuit current degradation rate and operating temperatures of the mini-modules. The activation energy for the encapsulant browning obtained from the outdoor field data and the indoor accelerated data are compared and analyzed in this work.
ContributorsVeerendra Kumar, Deepak Jain (Author) / Tamizhmani, Govindasamy (Committee member) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2016
154956-Thumbnail Image.png
Description
As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the

As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number (RPN). The RPN for all the defects in each PV plant is determined based on two databases: degradation rate database; defect rate database. In this analysis it is determined that the RPN for each plant is dictated by the technology type (crystalline silicon or thin-film), climate and age. The PV modules aging between 3 and 19 years in four different climates of hot-dry, hot-humid, cold-dry and temperate are investigated in this study.

In the second part, a statistical degradation analysis is performed to determine if the degradation rates are linear or not in the power plants exposed in a hot-dry climate for the crystalline silicon technologies. This linearity degradation analysis is performed using the data obtained through two methods: current-voltage method; metered kWh method. For the current-voltage method, the annual power degradation data of hundreds of individual modules in six crystalline silicon power plants of different ages is used. For the metered kWh method, a residual plot analysis using Winters’ statistical method is performed for two crystalline silicon plants of different ages. The metered kWh data typically consists of the signal and noise components. Smoothers remove the noise component from the data by taking the average of the current and the previous observations. Once this is done, a residual plot analysis of the error component is performed to determine the noise was successfully separated from the data by proving the noise is random.
ContributorsSundarajan, Prasanna (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Rogers, Bradley (Committee member) / Srinivasan, Devarajan (Committee member) / Arizona State University (Publisher)
Created2016
154103-Thumbnail Image.png
Description
The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has

The complicated, unpredictable, and often chaotic hot water usage pattern of typical households severely limits the effectiveness and efficiency of traditional solar hot water heater systems. Similar to large scale concentrating solar power plants, the use of thermal energy storage techniques to store collected solar energy as latent heat has the potential to improve the efficiency of solar hot water systems. Rather than being used to produce steam to generate electricity, the stored thermal energy would be used to heat water on-demand well after the sun sets. The scope of this thesis was to design, analyze, build, and test a proof of concept prototype for an on-demand solar water heater for residential use with latent heat thermal energy storage. The proof of concept system will be used for future research and can be quickly reconfigured making it ideal for use as a test bed. This thesis outlines the analysis, design, and testing processes used to model, build, and evaluate the performance of the prototype system.

The prototype system developed to complete this thesis was designed using systems engineering principles and consists of several main subsystems. These subsystems include a parabolic trough concentrating solar collector, a phase change material reservoir including heat exchangers, a heat transfer fluid reservoir, and a plumbing system. The system functions by absorbing solar thermal energy in a heat transfer fluid using the solar collector and transferring the absorbed thermal energy to the phase change material for storage. The system was analyzed using a mathematical model created in MATLAB and experimental testing was used to verify that the system functioned as designed. The mathematical model was designed to be adaptable for evaluating different system configurations for future research. The results of the analysis as well as the experimental tests conducted, verify that the proof of concept system is functional and capable of producing hot water using stored thermal energy. This will allow the system to function as a test bed for future research and long-term performance testing to evaluate changes in the performance of the phase change material over time. With additional refinement the prototype system has the potential to be developed into a commercially viable product for use in residential homes.
ContributorsPetre, Andrew (Author) / Rajadas, John N (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2015