Matching Items (1,209)
Filtering by

Clear all filters

152543-Thumbnail Image.png
Description
The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage

The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.
ContributorsJiang, Youyuan (Author) / Ayyanar, Raja (Thesis advisor) / Holbert, Keith E. (Committee member) / Chowdhury, Srabanti (Committee member) / Arizona State University (Publisher)
Created2014
152548-Thumbnail Image.png
Description
Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In

Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In this study, subjects lifted an L-shaped object with two fingers (2-DoF), and then lifted the object with three fingers (3-DoF). The subjects were divided into two groups--one group performed the task wearing a glove (to reduce tactile sensibility) upon the switch to 3-DoF (glove group), while the other group did not wear the glove (control group). Compensatory moment (torque) was used as a measure to determine how well the subject could minimize the tilt of the object following the switch from 2-DoF to 3-DoF. Upon the switch to 3-DoF, subjects wearing the glove generated a compensatory moment (Mcom) that had a significantly higher error than the average of the last five trials at the end of the 3-DoF block (p = 0.012), while the control subjects did not demonstrate a significant difference in Mcom. Additional effects of the reduction in tactile sensibility were: (1) the grip force for the group of subjects wearing the glove was significantly higher in the 3-DoF trials compared to the 2-DoF trials (p = 0.014), while the grip force of the control subjects was not significantly different; (2) the difference in centers of pressure between the thumb and fingers (ΔCoP) significantly increased in the 3-DoF block for the group of subjects wearing the glove, while the ΔCoP of the control subjects was not significantly different; (3) lastly, the control subjects demonstrated a greater increase in lift force than the group of subjects wearing the glove (though results were not significant). Combined together, these results suggest different force modulation strategies are used depending on the amount of tactile feedback that is available to the subject. Therefore, reduction of tactile sensibility has important effects on subjects' ability to transfer learned manipulation across different DoF contexts.
ContributorsGaw, Nathan (Author) / Helms Tillery, Stephen (Thesis advisor) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
152586-Thumbnail Image.png
Description
The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the

The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the system to some determined number of r significant mode shapes. Current building codes, such as the American Society of Civil Engineers (ASCE), require certain class of structures to obtain 90% effective mass participation as a way to estimate the accuracy of a solution for base shear motion. A parametric study was performed from the collected data obtained by the analysis of a large number of framed structures. The purpose of this study was the development of rules for the required number of r significant modes to meet the ASCE code requirements. The study was based on the implementation of an algorithm and a computer program developed in the past. The algorithm is based on Householders Transformations, QR Factorization, and Inverse Iteration and it extracts a requested s (s<< n) number of predominate mode shapes and periods. Only the first r (r < s) of these modes are accurate. To verify the accuracy of the algorithm a variety of building frames have been analyzed using the commercially available structural software (RISA 3D) as a benchmark. The salient features of the algorithm are presented briefly in this study.
ContributorsGrantham, Jonathan (Author) / Fafitis, Apostolos (Thesis advisor) / Attard, Thomas (Committee member) / Houston, Sandra (Committee member) / Hjelmstad, Keith (Committee member) / Arizona State University (Publisher)
Created2014
152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
152595-Thumbnail Image.png
Description
The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students

The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were observed across the phenomena. Overall, the presence and prevalence of both general and emergent misconceptions indicates that learners have limited understandings of the physical and emergent mechanisms for the phenomena. Even though additional work is required, the identification of specific misconceptions can be utilized to enhance semiconductor and PV course content. Specifically, changes can be made to curriculum in order to limit the formation of misconceptions as well as promote conceptual change.
ContributorsNelson, Katherine G (Author) / Brem, Sarah K. (Thesis advisor) / Mckenna, Ann F (Thesis advisor) / Hilpert, Jonathan (Committee member) / Honsberg, Christiana (Committee member) / Husman, Jenefer (Committee member) / Arizona State University (Publisher)
Created2014
152482-Thumbnail Image.png
Description
Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths.

Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths. Construction difficulties of new transmission lines can become a problem in certain locations. The increase of transmission line thermal ratings by reconductoring using High Temperature Low Sag (HTLS) conductors is a comparatively new technology introduced to transmission expansion. A special design permits HTLS conductors to operate at high temperatures (e.g., 200oC), thereby allowing passage of higher current. The higher temperature capability increases the steady state and emergency thermal ratings of the transmission line. The main disadvantage of HTLS technology is high cost. The high cost may place special emphasis on a thorough analysis of cost to benefit of HTLS technology im-plementation. Increased transmission losses in HTLS conductors due to higher current may be a disadvantage that can reduce the attractiveness of this method. Studies described in this thesis evaluate the expenditures for transmission line re-conductoring using HTLS and the consequent benefits obtained from the potential decrease in operating cost for thermally limited transmission systems. Studies performed consider the load growth and penetration of distributed renewable energy sources according to the renewable portfolio standards for power systems. An evaluation of payback period is suggested to assess the cost to benefit ratio of HTLS upgrades. The thesis also considers the probabilistic nature of transmission upgrades. The well-known Chebyshev inequality is discussed with an application to transmission up-grades. The Chebyshev inequality is proposed to calculate minimum payback period ob-tained from the upgrades of certain transmission lines. The cost to benefit evaluation of HTLS upgrades is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordi-nating Council (WECC).
ContributorsTokombayev, Askhat (Author) / Heydt, Gerald T. (Thesis advisor) / Sankar, Lalitha (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152521-Thumbnail Image.png
DescriptionThe purpose of this project is to explore the influence of folk music in guitar compositions by Manuel Ponce from 1923 to 1932. It focuses on his Tres canciones populares mexicanas and Tropico and Rumba.
ContributorsGarcia Santos, Arnoldo (Author) / Koonce, Frank (Thesis advisor) / Rogers, Rodney (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2014
152696-Thumbnail Image.png
Description
Increasing interest in individualized treatment strategies for prevention and treatment of health disorders has created a new application domain for dynamic modeling and control. Standard population-level clinical trials, while useful, are not the most suitable vehicle for understanding the dynamics of dosage changes to patient response. A secondary analysis of

Increasing interest in individualized treatment strategies for prevention and treatment of health disorders has created a new application domain for dynamic modeling and control. Standard population-level clinical trials, while useful, are not the most suitable vehicle for understanding the dynamics of dosage changes to patient response. A secondary analysis of intensive longitudinal data from a naltrexone intervention for fibromyalgia examined in this dissertation shows the promise of system identification and control. This includes datacentric identification methods such as Model-on-Demand, which are attractive techniques for estimating nonlinear dynamical systems from noisy data. These methods rely on generating a local function approximation using a database of regressors at the current operating point, with this process repeated at every new operating condition. This dissertation examines generating input signals for data-centric system identification by developing a novel framework of geometric distribution of regressors and time-indexed output points, in the finite dimensional space, to generate sufficient support for the estimator. The input signals are generated while imposing “patient-friendly” constraints on the design as a means to operationalize single-subject clinical trials. These optimization-based problem formulations are examined for linear time-invariant systems and block-structured Hammerstein systems, and the results are contrasted with alternative designs based on Weyl's criterion. Numerical solution to the resulting nonconvex optimization problems is proposed through semidefinite programming approaches for polynomial optimization and nonlinear programming methods. It is shown that useful bounds on the objective function can be calculated through relaxation procedures, and that the data-centric formulations are amenable to sparse polynomial optimization. In addition, input design formulations are formulated for achieving a desired output and specified input spectrum. Numerical examples illustrate the benefits of the input signal design formulations including an example of a hypothetical clinical trial using the drug gabapentin. In the final part of the dissertation, the mixed logical dynamical framework for hybrid model predictive control is extended to incorporate a switching time strategy, where decisions are made at some integer multiple of the sample time, and manipulation of only one input at a given sample time among multiple inputs. These are considerations important for clinical use of the algorithm.
ContributorsDeśapāṇḍe, Sunīla (Author) / Rivera, Daniel E. (Thesis advisor) / Peet, Matthew M. (Committee member) / Si, Jennie (Committee member) / Tsakalis, Konstantinos S. (Committee member) / Arizona State University (Publisher)
Created2014
152764-Thumbnail Image.png
Description
Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include:

Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include: (1) deposition of multiple sensors for multi-parameter metabolic measurements, e.g. oxygen, pH, etc.; (2) tedious and labor-intensive microwell array fabrication processes; (3) low yield of hermetic sealing between two rigid fused silica parts, even with a compliance layer of PDMS or Parylene-C. In this thesis, several improved microfabrication technologies are developed and demonstrated for analyzing multiple metabolic parameters from single cells, including (1) a modified "lid-on-top" configuration with a multiple sensor trapping (MST) lid which spatially confines multiple sensors to micro-pockets enclosed by lips for hermetic sealing of wells; (2) a multiple step photo-polymerization method for patterning three optical sensors (oxygen, pH and reference) on fused silica and on a polyethylene terephthalate (PET) surface; (3) a photo-polymerization method for patterning tri-color (oxygen, pH and reference) optical sensors on both fused silica and on the PET surface; (4) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can withstand cell culture conditions. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.
ContributorsSong, Ganquan (Author) / Meldrum, Deirdre R (Thesis advisor) / Goryll, Michael (Committee member) / Wang, Hong (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2014