Matching Items (12)
Filtering by

Clear all filters

152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
151072-Thumbnail Image.png
Description

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently

Perpetual Pavements, if properly designed and rehabilitated, it can last longer than 50 years without major structural rehabilitation. Fatigue endurance limit is a key parameter for designing perpetual pavements to mitigate bottom-up fatigue cracking. The endurance limit has not been implemented in the Mechanistic Empirical Pavement Design Guide software, currently known as DARWin-ME. This study was conducted as part of the National Cooperative Highway Research Program (NCHRP) Project 9-44A to develop a framework and mathematical methodology to determine the fatigue endurance limit using the uniaxial fatigue test. In this procedure, the endurance limit is defined as the allowable tensile strains at which a balance takes place between the fatigue damage during loading, and the healing during the rest periods between loading pulses. The viscoelastic continuum damage model was used to isolate time dependent damage and healing in hot mix asphalt from that due to fatigue. This study also included the development of a uniaxial fatigue test method and the associated data acquisition computer programs to conduct the test with and without rest period. Five factors that affect the fatigue and healing behavior of asphalt mixtures were evaluated: asphalt content, air voids, temperature, rest period and tensile strain. Based on the test results, two Pseudo Stiffness Ratio (PSR) regression models were developed. In the first model, the PSR was a function of the five factors and the number of loading cycles. In the second model, air voids, asphalt content, and temperature were replaced by the initial stiffness of the mix. In both models, the endurance limit was defined when PSR is equal to 1.0 (net damage is equal to zero). The results of the first model were compared to the results of a stiffness ratio model developed based on a parallel study using beam fatigue test (part of the same NCHRP 9-44A). The endurance limit values determined from uniaxial and beam fatigue tests showed very good correlation. A methodology was described on how to incorporate the second PSR model into fatigue analysis and damage using the DARWin-ME software. This would provide an effective and efficient methodology to design perpetual flexible pavements.

ContributorsZeiada, Waleed (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Zapata, Claudia (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2012
171706-Thumbnail Image.png
Description
Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat

Thermal susceptibility is one of the biggest challenges that asphalt pavements must overcome. Asphalt mixture’s thermal susceptibility can increase problems related to permanent deformation, and the expansion-contraction phenomenon triggers thermal cracking. Furthermore, there is a common worldwide interest in environmental impacts and pavements. Saving energy and mitigating the urban heat island (UHI) effect have been drawing the attention of researchers, governments, and industrial organizations. Pavements have been shown to play an important role in the UHI effect. Globally, about 90% of roadways are made of asphalt mixtures. The main objective of this research study involves the development and testing of an innovative aerogel-based product in the modification of asphalt mixtures to function as a material with unique thermal resistance properties, and potentially providing an urban cooling mechanism for the UHI. Other accomplishments included the development of test procedures to estimate the thermal conductivity of asphalt binders, the expansion-contraction of asphalt mixtures, and a computational tool to better understand the pavement’s thermal profile and stresses. Barriers related to the manufacturing and field implementation of the aerogel-based product were overcome. Unmodified and modified asphalt mixtures were manufactured at an asphalt plant to build pavement slabs. Thermocouples installed at top and bottom collected data daily. This data was valuable in understanding the temperature fluctuation of the pavement. Also, the mechanical properties of asphalt binders and mixtures with and without the novel product were evaluated in the laboratory. Fourier transform infrared (FTIR) and scanning electron microscope (SEM) analyses were also used to understand the interaction of the developed product with bituminous materials. The modified pavements showed desirable results in reducing overall pavement temperatures and suppressing the temperature gradient, a key to minimize thermal cracking. The comprehensive laboratory tests showed favorable outcomes for pavement performance. The use of a pavement design software, and life cycle/cost assessment studies supported the use of this newly developed technology. Modified pavements would perform better than control in distresses related to permanent deformation and thermal cracking; they reduce tire/pavement noise, require less raw material usage during their life cycle, and have lower life cycle cost compared to conventional pavements.
ContributorsObando Gamboa, Carlos Javier (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Ozer, Hasan (Committee member) / Fini, Elham (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2022
156880-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

ContributorsSrinivasan, Aswin Kumar Kumar (Author) / Kaloush, Kamil (Thesis advisor) / Medina, Jose R. (Jose Roberto) (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156729-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber

Crumb rubber use in asphalt mixtures using wet process technology has been in practice for years in the United States with good performance history; however, it has some drawbacks that include the need for special blending equipment, high rubber-binder temperatures, and longer waiting time at mixing plants. Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier known as Reacted and Activated Rubber (RAR) is one such technology. RAR (industrially known as “RARX”) acts like an Enhanced Elastomeric Asphalt Extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objective of this research study was first to perform a Superpave mix design for determination of optimum asphalt content with 35% RAR by weight of binder; and secondly, analyse the performance of RAR modified mixtures prepared using the dry process against Crumb Rubber Modified (CRM) mixtures prepared using the wet process by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to fabricate RAR and CRM mixtures and Performance Grade (PG) 70-10 was used to fabricate Control mixtures for this study. Laboratory tests included: Dynamic Modulus Test, Flow Number Test, Tensile Strength Ratio, Axial Cyclic Fatigue Test and C* Fracture Test. Observations from test results indicated that RAR mixes prepared through the dry process had excellent fatigue life, moisture resistance and cracking resistance compared to the other mixtures.

ContributorsShah, Janak (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffery (Committee member) / Arizona State University (Publisher)
Created2018
154328-Thumbnail Image.png
Description

Crack sealing is considered one of the least expensive and cost effective maintenance activity used on pavements. In some cases, crack sealing suffers from premature failure due to various material, environmental, and construction issues. A survey that was conducted as part of this study showed that the highest sealant failure

Crack sealing is considered one of the least expensive and cost effective maintenance activity used on pavements. In some cases, crack sealing suffers from premature failure due to various material, environmental, and construction issues. A survey that was conducted as part of this study showed that the highest sealant failure year occurring on the second year. Therefore, any attempt to increase the sealants’ service life by addressing and improving the sealant properties and their resistance to failure will benefit the effectiveness of this treatment.

The goal behind this study was to evaluate the potential improvement in performance of hot applied sealant material commonly used in the Phoenix area, and evaluate the performance of using a neat binder modified with crumb rubber (at 5 and 10% by weight of binder) as a low-grade sealing material. The sealants was also modified with crumb rubber at 2.5, and 5% by weight fo the sealant. Six ASTM tests were conducted for the comparison. These tests are the Standard Penetration Test (SPT) and Cone Penetration Test (CPT), Resilience Test, Softening Point Test, Brookfield Viscometer Test, and Dynamic Shear Rheometer (DSR).

The results showed that adding only crumb rubber to a neat binder for its potential use as a crack sealant is inadequate to meet the specifications expected for sealants. However, the modification of the sealant with crumb rubber showed some benefits, such as increased elasticity and decreased temperature susceptibility. A crumb rubber content of 2.5% by weight of the sealant was recommended.

ContributorsThwaini, Talal (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Committee member) / Underwood, Benjamin (Committee member) / Arizona State University (Publisher)
Created2016
152795-Thumbnail Image.png
Description

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population with an array of socio-demographic and socio-economic attributes has drawn remarkable attention due to privacy and cost constraints in collecting and disclosing full scale data. Although, there has been enormous progress in producing synthetic population, there has been less progress in the development of population evolution modeling arena to forecast future year population. The objective of this dissertation is to develop a well-structured full-fledged demographic evolution modeling system, capturing migration dynamics and evolution of person level attributes, introducing the concept of new household formations and apprehending the dynamics of household level long-term choices over time. A comprehensive study has been conducted on demography, sociology, anthropology, economics and transportation engineering area to better understand the dynamics of evolutionary activities over time and their impacts in travel behavior. This dissertation describes the methodology and the conceptual framework, and the development of model components. Demographic, socio-economic, and land use data from American Community Survey, National Household Travel Survey, Census PUMS, United States Time Series Economic Dynamic data and United States Center for Disease Control and Prevention have been used in this research. The entire modeling system has been implemented and coded using programming language to develop the population evolution module named `PopEvol' into a computer simulation environment. The module then has been demonstrated for a portion of Maricopa County area in Arizona to predict the milestone year population to check the accuracy of forecasting. The module has also been used to evolve the base year population for next 15 years and the evolutionary trend has been investigated.

ContributorsPaul, Sanjay (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2014
152787-Thumbnail Image.png
Description

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface has a profound impact on the intensity of the retroreflected light. In order to gain insight into how the glass beads provide retroreflection, an experiment was carried out to produce paint stripes with glass beads and measure the retroreflection. Samples were created at various application rates and embedment depths, in an attempt to verify the optimal embedment and observe the effect of application rate on retroreflection. The experiment was conducted using large, airport quality beads and small, road quality beads. Image analysis was used to calculate the degree to which beads were embedded and in an attempt to quantify bead distribution on the stripe surface. The results from the large beads showed that retroreflection was maximized when the beads were embedded approximately seventy percent by bead volume. The results also showed that as the application rate increased, the retroreflection increased, up to a point and then decreased. A model was developed to estimate the retroreflectivity given the amount of beads, bead spacing, and distribution of bead embedment. Results from the small beads were less conclusive, but did demonstrate that the larger beads are better at providing retroreflection. Avenues for future work in this area were identified as the experiment was conducted.

ContributorsStevens, Ryan David (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
152749-Thumbnail Image.png
Description

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objectives of this research study were to evaluate the rheological and aging properties of binders modified with RuBindTM and its compatibility with warm mix technology. Two binders were used for this study: Performance Grade (PG) 70-10 and PG 64-22, both modified with 25% by weight of asphalt binder. Laboratory test included: penetration, softening point, viscosity, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Tests were conducted under original, short and long -term aging conditions. Observations from the test results indicated that there is a better improvement when RuBindTM is added to a softer binder, in this case a PG 64-22. For short-term aging, the modified binder showed a similar aging index compared to the control. However, long term aging was favorable for the modified binders. The DSR results showed that the PG 64-22 binder high temperature would increase to 82 °C, and PG 70-10 would be increased to 76 °C, both favorable results. The intermediate temperatures also showed an improvement in fatigue resistance (as measured by the Superpave PG grading parameter |G*|sinä). Test results at low temperatures did not show a substantial improvement, but the results were favorable showing reduced stiffness with the addition of RuBindTM. The evaluation of warm mix additive using EvothermTM confirmed the manufacturer information that the product should have no negative effects on the binder properties; that is the modified binder can be used in a warm mix process. These results were encouraging and the recommendation was to continue with a follow up study with mixture tests using the RuBindTM modified binders.

ContributorsMedina, Jose R. (Jose Roberto) (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Shane (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
156375-Thumbnail Image.png
Description

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although

Asphalt concrete is the most recycled material in the United States and its reclamation allows the positive reuse of the constituent aggregates and asphalt binder, contributing to the long-term sustainability of the transportation infrastructure; decreasing costs, and the total energy and greenhouse emissions embodied into new materials and infrastructure. Although the national trends in Reclaimed Asphalt Pavements (RAP) usage are encouraging, the environmental conditions in Phoenix, Arizona are extreme and needs further consideration.

The objective of this research study was to evaluate the viability of using RAP in future pavement maintenance and rehabilitation projects for the City. Agencies in the State of Arizona have been slow adopting the use of RAP as a regular practice. While the potential benefits are great, there is some concern on the impact to long-term pavement performance.

RAP millings were sampled from the city’s stockpiles; processed RAP and virgin materials were provided by a local plant. Two asphalt binders were used: PG 70-10 and PG 64-16. RAP variability was evaluated by aggregate gradations; extracted and recovered binder was tested for properties and grading.

A mixture design procedure based on the City’s specifications was defined to establish trial blends. RAP incorporation was based on national and local practices. Four different RAP contents were studied 10%, 15%, 25%, and 25% content with a softer binder, in addition to a control mix (0% RAP).

Performance tests included: dynamic modulus to evaluate stiffness; Flow Number, to assess susceptibility for permanent deformation (rutting); and Tensile Strength Ratio as a measure of susceptibility to moisture damage.

Binder testing showed very stiff recovered asphalts and variable contents with a reasonable variability on aggregate gradations. Performance test results showed slightly higher modulus as RAP content increases, showing a slight improvement related to rutting as well. For moisture damage potential, all mixtures performed well showing improvement for RAP mixtures in most cases.

Statistical analysis showed that 0%, 10%, 15% and 25% with softer binder do not present significant statistical difference among mixtures, indicating that moderate RAP contents are feasible to use within the City paving operations and will not affect greatly nor negatively the pavement performance.

ContributorsARREDONDO, GONZALO ZELADA (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2018