Matching Items (6)
Filtering by

Clear all filters

152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
154128-Thumbnail Image.png
Description
Recognition of algae as a “Fit for Purpose” biomass and its potential as an energy and bio-product resource remains relatively obscure. This is due to the absence of tailored and unified production information necessary to overcome several barriers for commercial viability and environmental sustainability. The purpose of this research was

Recognition of algae as a “Fit for Purpose” biomass and its potential as an energy and bio-product resource remains relatively obscure. This is due to the absence of tailored and unified production information necessary to overcome several barriers for commercial viability and environmental sustainability. The purpose of this research was to provide experimentally verifiable estimates for direct energy and water demand for the algal cultivation stage which yields algal biomass for biofuels and other bio-products. Algal biomass productivity was evaluated using different cultivation methods in conjunction with assessment for potential reduction in energy and water consumption for production of fuel and feed. Direct water and energy demands are the major focal sustainability metrics in hot and arid climates and are influenced by environmental and operational variables connected with selected algal cultivation technologies. Evaporation is a key component of direct water demand for algal cultivation and directly related to variations in temperature and relative humidity. Temperature control strategies relative to design and operational variables were necessary to mitigate overheating of the outdoor algae culture in panel photobioreactors and sub-optimal cultivation temperature in open pond raceways. Mixing in cultivation systems was a major component in direct energy demand that was provided by aeration in panel bioreactors and paddlewheels in open pond raceways. Management of aeration time to meet required biological interactions provides opportunities for reduced direct energy demand in panel photobioreactors. However, the potential for reduction in direct energy demand in raceway ponds is limited to hydraulics and head loss. Algal cultivation systems were reviewed for potential integration into dairy facilities in order to determine direct energy demand and nutrient requirements for algal biomass production for animal feed. The direct energy assessment was also evaluated for key components of related energy and design parameters for conventional raceway ponds and a gravity fed system. The results of this research provide a platform for selecting appropriate production scenarios with respect to resource use and to ensure a cost effective product with the least environmental burden.
ContributorsBadvipour, Shahrzad (Author) / Sommerfeld, Milton (Thesis advisor) / Downes, Meghan (Committee member) / Abbott, Joshua (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2015
153486-Thumbnail Image.png
Description
Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare

Quantum resilience is a pragmatic theory that allows systems engineers to formally characterize the resilience of systems. As a generalized theory, it not only clarifies resilience in the literature, but also can be applied to all disciplines and domains of discourse. Operationalizing resilience in this manner permits decision-makers to compare and contrast system deployment options for suitability in a variety of environments and allows for consistent treatment of resilience across domains. Systems engineers, whether planning future infrastructures or managing ecosystems, are increasingly asked to deliver resilient systems. Quantum resilience provides a way forward that allows specific resilience requirements to be specified, validated, and verified.

Quantum resilience makes two very important claims. First, resilience cannot be characterized without recognizing both the system and the valued function it provides. Second, resilience is not about disturbances, insults, threats, or perturbations. To avoid crippling infinities, characterization of resilience must be accomplishable without disturbances in mind. In light of this, quantum resilience defines resilience as the extent to which a system delivers its valued functions, and characterizes resilience as a function of system productivity and complexity. System productivity vis-à-vis specified “valued functions” involves (1) the quanta of the valued function delivered, and (2) the number of systems (within the greater system) which deliver it. System complexity is defined structurally and relationally and is a function of a variety of items including (1) system-of-systems hierarchical decomposition, (2) interfaces and connections between systems, and (3) inter-system dependencies.

Among the important features of quantum resilience is that it can be implemented in any system engineering tool that provides sufficient design and specification rigor (i.e., one that supports standards like the Lifecycle and Systems Modeling languages and frameworks like the DoD Architecture Framework). Further, this can be accomplished with minimal software development and has been demonstrated in three model-based system engineering tools, two of which are commercially available, well-respected, and widely used. This pragmatic approach assures transparency and consistency in characterization of resilience in any discipline.
ContributorsRoberts, Thomas Wade (Author) / Allenby, Braden (Thesis advisor) / Chester, Mikhail (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2015
153252-Thumbnail Image.png
Description
Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following:

Effective collection and dissemination of project information, including best practices, help increase the likelihood of project performance and are vital to organizations in the architecture-engineering-construction (AEC) industry. Best practices can help improve project performance, yet these practices are not universally implemented and used in the industry, due to the following: 1) not all practices are applicable to every project or organization, 2) knowledge lost in organizational turnover which leads to inconsistent collection and implementation of best practices and 3) the lack of standardized processes for best practice management in an organization.

This research, sponsored by National Academy of Construction, the Construction Industry Institute and Arizona State University, used structured interviews, a Delphi study and focus groups to explore: 1) potential benefit and industry interest in an open repository of best practices and 2) important elements of a framework/model that guides the creation, management and sustainment of an open repository of best practices.

This dissertation presents findings specifically exploring the term "Practices for Excellence", its definition, elements that hinder implementation, the potential value of an open online repository for such practices and a model to develop an open repository.
ContributorsBosfield, Roberta Patrice (Author) / Gibson, Edd (Thesis advisor) / Chester, Mikhail (Committee member) / Parrish, Kristen (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2014
156901-Thumbnail Image.png
Description
Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission

Fossil fuel CO2 (FFCO2) emissions are recognized as the dominant greenhouse gas driving climate change (Enting et. al., 1995; Conway et al., 1994; Francey et al., 1995; Bousquet et. al., 1999). Transportation is a major component of FFCO2 emissions, especially in urban areas. An improved understanding of on-road FFCO2 emission at high spatial resolution is essential to both carbon science and mitigation policy. Though considerable research has been accomplished within a few high-income portions of the planet such as the United States and Western Europe, little work has attempted to comprehensively quantify high-resolution on-road FFCO2 emissions globally. Key questions for such a global quantification are: (1) What are the driving factors for on-road FFCO2 emissions? (2) How robust are the relationships? and (3) How do on-road FFCO2 emissions vary with urban form at fine spatial scales?

This study used urban form/socio-economic data combined with self-reported on-road FFCO2 emissions for a sample of global cities to estimate relationships within a multivariate regression framework based on an adjusted STIRPAT model. The on-road high-resolution (whole-city) regression FFCO2 model robustness was evaluated by introducing artificial error, conducting cross-validation, and assessing relationship sensitivity under various model specifications. Results indicated that fuel economy, vehicle ownership, road density and population density were statistically significant factors that correlate with on-road FFCO2 emissions. Of these four variables, fuel economy and vehicle ownership had the most robust relationships.

A second regression model was constructed to examine the relationship between global on-road FFCO2 emissions and urban form factors (described by population

ii

density, road density, and distance to activity centers) at sub-city spatial scales (1 km2). Results showed that: 1) Road density is the most significant (p<2.66e-037) predictor of on-road FFCO2 emissions at the 1 km2 spatial scale; 2) The correlation between population density and on-road FFCO2 emissions for interstates/freeways varies little by city type. For arterials, on-road FFCO2 emissions show a stronger relationship to population density in clustered cities (slope = 0.24) than dispersed cities (slope = 0.13). FFCO2 3) The distance to activity centers has a significant positive relationship with on-road FFCO2 emission for the interstate and freeway toad types, but an insignificant relationship with the arterial road type.
ContributorsSong, Yang (Author) / Gurney, Kevin (Thesis advisor) / Kuby, Michael (Committee member) / Golub, Aaron (Committee member) / Chester, Mikhail (Committee member) / Selover, Nancy (Committee member) / Arizona State University (Publisher)
Created2018