Matching Items (5)
Filtering by

Clear all filters

149930-Thumbnail Image.png
Description
Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the quality characteristics of the data effectively communicated beyond the analyst.

Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the quality characteristics of the data effectively communicated beyond the analyst. This research is an exercise in measuring and reporting data quality. The assessment was conducted to support the performance measurement program at the Maricopa Association of Governments in Phoenix, Arizona, and investigates the traffic data from 228 continuous monitoring freeway sensors in the metropolitan region. Results of the assessment provide an example of describing the quality of the traffic data with each of six data quality measures suggested in the literature, which are accuracy, completeness, validity, timeliness, coverage and accessibility. An important contribution is made in the use of data quality visualization tools. These visualization tools are used in evaluating the validity of the traffic data beyond pass/fail criteria commonly used. More significantly, they serve to educate an intuitive sense or understanding of the underlying characteristics of the data considered valid. Recommendations from the experience gained in this assessment include that data quality visualization tools be developed and used in the processing and quality control of traffic data, and that these visualization tools, along with other information on the quality control effort, be stored as metadata with the processed data.
ContributorsSamuelson, Jothan P (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2011
152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
168331-Thumbnail Image.png
Description
To reduce the environmental burden of transport, previous studies have resorted on solutions that accentuate towards techno-economical pathways. However, there is growing evidence that transport behaviors, lifestyle choices, and the role of individuals' attitudes/perceptions are considered influential factors in shaping households’ engagement with sustainable technologies in the face of environmental

To reduce the environmental burden of transport, previous studies have resorted on solutions that accentuate towards techno-economical pathways. However, there is growing evidence that transport behaviors, lifestyle choices, and the role of individuals' attitudes/perceptions are considered influential factors in shaping households’ engagement with sustainable technologies in the face of environmental crises. The objective of this dissertation is to develop multidimensional econometric model systems to explore complex relationships that can help us understand travel behaviors' implications for transport and household energy use. To this end, the second chapter of this dissertation utilizes the latent segmentation approach to quantify and unravel the relationship between attitudes and behaviors while recognizing the presence of unobserved heterogeneity in the population. It was found that two-thirds of the population fall in the causal structure where behavioral experiences are shaping attitudes, while for one-third attitudes are shaping behaviors. The findings have implications on the energy-behavior modeling paradigm and forecasting household energy use. Building on chapter two, the third chapter develops an integrated modeling framework to explore the factors that influence the adoption of on-demand mobility services and electric vehicle ownership while placing special emphasis on attitudes/perceptions. Results indicated that attitudes and values significantly affect the use of on-demand transportation services and electric vehicle ownership, suggesting that information campaigns and free trials/demonstrations would help advance towards the sustainable transportation future and decarbonize the transport sector. The integrated modeling framework is enhanced, in chapter four, to explore the interrelationship between transport and residential energy consumption. The findings indicated the existence of small but significant net complimentary relationships between transport and residential energy consumption. Additionally, the modeling framework enabled the comparison of energy consumption patterns across market segments. The resulting integrated transport and residential energy consumption model system is utilized, in chapter fifth, to shed light on the overall household energy footprint implications of shifting vehicle/fuel type choices. Results indicated that electric vehicles are driven as much as gasoline vehicles are. Interestingly, while an increase in residential energy consumption was observed with the wide-scale adoption of electric vehicles, the total household energy use decreased, indicating benefits associated with transportation electrification.
ContributorsSharda, Shivam (Author) / Pendyala, Ram M. (Thesis advisor) / Khoeini, Sara (Committee member) / Grimm, Kevin J. (Committee member) / Chester, Mikhail V. (Committee member) / Garikapati, Venu M. (Committee member) / Arizona State University (Publisher)
Created2021
152795-Thumbnail Image.png
Description

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population with an array of socio-demographic and socio-economic attributes has drawn remarkable attention due to privacy and cost constraints in collecting and disclosing full scale data. Although, there has been enormous progress in producing synthetic population, there has been less progress in the development of population evolution modeling arena to forecast future year population. The objective of this dissertation is to develop a well-structured full-fledged demographic evolution modeling system, capturing migration dynamics and evolution of person level attributes, introducing the concept of new household formations and apprehending the dynamics of household level long-term choices over time. A comprehensive study has been conducted on demography, sociology, anthropology, economics and transportation engineering area to better understand the dynamics of evolutionary activities over time and their impacts in travel behavior. This dissertation describes the methodology and the conceptual framework, and the development of model components. Demographic, socio-economic, and land use data from American Community Survey, National Household Travel Survey, Census PUMS, United States Time Series Economic Dynamic data and United States Center for Disease Control and Prevention have been used in this research. The entire modeling system has been implemented and coded using programming language to develop the population evolution module named `PopEvol' into a computer simulation environment. The module then has been demonstrated for a portion of Maricopa County area in Arizona to predict the milestone year population to check the accuracy of forecasting. The module has also been used to evolve the base year population for next 15 years and the evolutionary trend has been investigated.

ContributorsPaul, Sanjay (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2014
153149-Thumbnail Image.png
Description

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations remain under-studied. As metropolitan planning organizations continue to improve their regional travel models by incorporating processes and parameters specific to major regional special generators, university population travel characteristics need to be measured and special submodels that capture their behavior need to be developed. The research presented herein begins by documenting the design and administration of a comprehensive university student online travel and mode use survey that was administered at Arizona State University (ASU) in the Greater Phoenix region of Arizona. The dissertation research offers a detailed statistical analysis of student travel behavior for different student market segments. A framework is then presented for incorporating university student travel into a regional travel demand model. The application of the framework to the ASU student population is documented in detail. A comprehensive university student submodel was estimated and calibrated for integration with the full regional travel model system. Finally, student attitudes toward travel are analyzed and used as explanatory factors in multinomial logit models of mode choice. This analysis presents an examination of the extent to which attitudes play a role in explaining mode choice behavior of university students in an urban setting. The research provides evidence that student travel patterns vary substantially from those of the rest of the population, and should therefore be considered separately when forecasting travel demand and formulating transport policy in areas where universities are major contributors to regional travel.

ContributorsVolosin, Sarah Elia (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Konduri, Karthik C (Committee member) / Arizona State University (Publisher)
Created2014