Matching Items (19)
Filtering by

Clear all filters

150208-Thumbnail Image.png
Description
Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) based amplifiers. However, their low-voltage analog implementations also require a linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a frequency-domain quantization is presented in this paper. The digital-intensive frequency domain approach achieves high linearity under low-supply regimes. An analog comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- (ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-order noise shaping is achieved using only two analog integrators. A single-loop, singlebit class-D audio amplifier is presented with an H-bridge switching power stage, which is designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output power of 280 mW.
ContributorsLee, Junghan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Ozev, Sule (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2011
150241-Thumbnail Image.png
Description
ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices

ABSTRACT To meet stringent market demands, manufacturers must produce Radio Frequency (RF) transceivers that provide wireless communication between electronic components used in consumer products at extremely low cost. Semiconductor manufacturers are in a steady race to increase integration levels through advanced system-on-chip (SoC) technology. The testing costs of these devices tend to increase with higher integration levels. As the integration levels increase and the devices get faster, the need for high-calibre low cost test equipment become highly dominant. However testing the overall system becomes harder and more expensive. Traditionally, the transceiver system is tested in two steps utilizing high-calibre RF instrumentation and mixed-signal testers, with separate measurement setups for transmitter and receiver paths. Impairments in the RF front-end, such as the I/Q gain and phase imbalance and nonlinearity, severely affect the performance of the device. The transceiver needs to be characterized in terms of these impairments in order to guarantee good performance and specification requirements. The motivation factor for this thesis is to come up with a low cost and computationally simple extraction technique of these impairments. In the proposed extraction technique, the mapping between transmitter input signals and receiver output signals are used to extract the impairment and nonlinearity parameters. This is done with the help of detailed mathematical modeling of the transceiver. While the overall behavior is nonlinear, both linear and nonlinear models to be used under different test setups are developed. A two step extraction technique has been proposed in this work. The extraction of system parameters is performed by using the mathematical model developed along with a genetic algorithm implemented in MATLAB. The technique yields good extraction results with reasonable error. It uses simple mathematical operation which makes the extraction fast and computationally simple when compared to other existing techniques such as traditional two step dedicated approach, Nonlinear Solver (NLS) approach, etc. It employs frequency domain analysis of low frequency input and output signals, over cumbersome time domain computations. Thus a test method, including detailed behavioral modeling of the transceiver, appropriate test signal design along with a simple algorithm for extraction is presented.
ContributorsSreenivassan, Aiswariya (Author) / Ozev, Sule (Thesis advisor) / Kiaei, Sayfe (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
151804-Thumbnail Image.png
Description
The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change

The partially-depleted (PD) silicon Metal Semiconductor Field Effect Transistor (MESFET) is becoming more and more attractive for analog and RF applications due to its high breakdown voltage. Compared to conventional CMOS high voltage transistors, the silicon MESFET can be fabricated in commercial standard Silicon-on-Insulator (SOI) CMOS foundries without any change to the process. The transition frequency of the device is demonstrated to be 45GHz, which makes the MESFET suitable for applications in high power RF power amplifier designs. Also, high breakdown voltage and low turn-on resistance make it the ideal choice for switches in the switching regulator designs. One of the anticipated applications of the MESFET is for the pass device for a low dropout linear regulator. Conventional NMOS and PMOS linear regulators suffer from high dropout voltage, low bandwidth and poor stability issues. In contrast, the N-MESFET pass transistor can provide an ultra-low dropout voltage and high bandwidth without the need for an external compensation capacitor to ensure stability. In this thesis, the design theory and problems of the conventional linear regulators are discussed. N-MESFET low dropout regulators are evaluated and characterized. The error amplifier used a folded cascode architecture with gain boosting. The source follower topology is utilized as the buffer to sink the gate leakage current from the MESFET. A shunt-feedback transistor is added to reduce the output impedance and provide the current adaptively. Measurement results show that the dropout voltage is less than 150 mV for a 1A load current at 1.8V output. Radiation measurements were done for discrete MESFET and fully integrated LDO regulators, which demonstrate their radiation tolerance ability for aerospace applications.
ContributorsChen, Bo (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
150907-Thumbnail Image.png
Description
The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can hel

The presence of compounds such as pharmaceuticals and personal care products (PPCPs) in the environment is a cause for concern as they exhibit secondary effects on non-target organisms and are also indicative of incomplete removal by wastewater treatment plants (WWTPs) during water reclamation. Analytical methods and predictive models can help inform on the rates at which these contaminants enter the environment via biosolids use or wastewater effluent release to estimate the risk of adverse effects. The goals of this research project were to integrate the results obtained from the two different methods of risk assessment, (a) in silico modeling and (b) experimental analysis. Using a previously published empirical model, influent and effluent concentration ranges were predicted for 10 sterols and validated with peer-reviewed literature. The in silico risk assessment analysis performed for sterols and hormones in biosolids concluded that hormones possess high leaching potentials and that particularly 17-α-ethinyl estradiol (EE2) can pose significant threat to fathead minnows (P. promelas) via leaching from terrestrial depositions of biosolids. Six mega-composite biosolids samples representative of 94 WWTPs were analyzed for a suite of 120 PPCPs using the extended U.S. EPA Method 1694 protocol. Results indicated the presence of 26 previously unmonitored PPCPs in the samples with estimated annual release rates of 5-15 tons yr-1 via land application of biosolids. A mesocosm sampling analysis that was included in the study concluded that four compounds amitriptyline, paroxetine, propranolol and sertraline warrant further monitoring due to their high release rates from land applied biosolids and their calculated extended half-lives in soils. There is a growing interest in the scientific community towards the development of new analytical protocols for analyzing solid matrices such as biosolids for the presence of PPCPs and other established and emerging contaminants of concern. The two studies presented here are timely and an important addition to the increasing base of scientific articles regarding environmental release of PPCPs and exposure risks associated with biosolids land application. This research study emphasizes the need for coupling experimental results with predictive analytical modeling output in order to more fully assess the risks posed by compounds detected in biosolids.
ContributorsPrakash Chari, Bipin (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2012
149370-Thumbnail Image.png
Description
ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses

ABSTRACT Ongoing research into wireless transceivers in the 60 GHz band is required to address the demand for high data rate communications systems at a frequency where signal propagation is challenging even over short ranges. This thesis proposes a mixer architecture in Complementary Metal Oxide Semiconductor (CMOS) technology that uses a voltage controlled oscillator (VCO) operating at a fractional multiple of the desired output signal. The proposed topology is different from conventional subharmonic mixing in that the oscillator phase generation circuitry usually required for such a circuit is unnecessary. Analysis and simulations are performed on the proposed mixer circuit in an IBM 90 nm RF process on a 1.2 V supply. A typical RF transmitter system is considered in determining the block requirements needed for the mixer to meet the IEEE 802.11ad 60 GHz Draft Physical Layer Specification. The proposed circuit has a conversion loss of 21 dB at 60 GHz with a 5 dBm LO power at 20 GHz. Input-referred third-order intercept point (IIP3) is 2.93 dBm. The gain and linearity of the proposed mixer are sufficient for Orthogonal Frequency Division Multiplexing (OFDM) modulation at 60 GHz with a transmitted data rate of over 4 Gbps.
ContributorsMartino, Todd Jeffrey (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2010
149494-Thumbnail Image.png
Description
The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the

The constant scaling of supply voltages in state-of-the-art CMOS processes has led to severe limitations for many analog circuit applications. Some CMOS processes have addressed this issue by adding high voltage MOSFETs to their process. Although it can be a completely viable solution, it usually requires a changing of the process flow or adding additional steps, which in turn, leads to an increase in fabrication costs. Si-MESFETs (silicon-metal-semiconductor-field-effect-transistors) from Arizona State University (ASU) on the other hand, have an inherent high voltage capability and can be added to any silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) CMOS process free of cost. This has been proved at five different commercial foundries on technologies ranging from 0.5 to 0.15 μm. Another critical issue facing CMOS processes on insulated substrates is the scaling of the thin silicon channel. Consequently, the future direction of SOI/SOS CMOS transistors may trend away from partially depleted (PD) transistors and towards fully depleted (FD) devices. FD-CMOS are already being implemented in multiple applications due to their very low power capability. Since the FD-CMOS market only figures to grow, it is appropriate that MESFETs also be developed for these processes. The beginning of this thesis will focus on the device aspects of both PD and FD-MESFETs including their layout structure, DC and RF characteristics, and breakdown voltage. The second half will then shift the focus towards implementing both types of MESFETs in an analog circuit application. Aside from their high breakdown ability, MESFETs also feature depletion mode operation, easy to adjust but well controlled threshold voltages, and fT's up to 45 GHz. Those unique characteristics can allow certain designs that were previously difficult to implement or prohibitively expensive using conventional technologies to now be achieved. One such application which benefits is low dropout regulators (LDO). By utilizing an n-channel MESFET as the pass transistor, a LDO featuring very low dropout voltage, fast transient response, and stable operation can be achieved without an external capacitance. With the focus of this thesis being MESFET based LDOs, the device discussion will be mostly tailored towards optimally designing MESFETs for this particular application.
ContributorsLepkowski, William (Author) / Thornton, Trevor (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Goryll, Michael (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2010
157182-Thumbnail Image.png
Description
There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force

There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.
ContributorsHabibiMehr, Payam (Author) / Thornton, Trevor John (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Formicone, Gabriele (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2019
154027-Thumbnail Image.png
Description
This dissertation focused on the development and application of state-of-the-art monitoring tools and analysis methods for tracking the fate of trace level contaminants in the natural and built water environments, using fipronil as a model; fipronil and its primary degradates (known collectively as fiproles) are among a group of trace

This dissertation focused on the development and application of state-of-the-art monitoring tools and analysis methods for tracking the fate of trace level contaminants in the natural and built water environments, using fipronil as a model; fipronil and its primary degradates (known collectively as fiproles) are among a group of trace level emerging environmental contaminants that are extremely potent arthropodic neurotoxins. The work further aimed to fill in data gaps regarding the presence and fate of fipronil in engineered water systems, specifically in a wastewater treatment plant (WWTP), and in an engineered wetland. A review of manual and automated “active” water sampling technologies motivated the development of two new automated samplers capable of in situ biphasic extraction of water samples across the bulk water/sediment interface of surface water systems. Combined with an optimized method for the quantification of fiproles, the newly developed In Situ Sampler for Biphasic water monitoring (IS2B) was deployed along with conventional automated water samplers, to study the fate and occurrence of fiproles in engineered water environments; continuous sampling over two days and subsequent analysis yielded average total fiprole concentrations in wetland surface water (9.9 ± 4.6 to 18.1 ± 4.6 ng/L) and wetland sediment pore water (9.1 ± 3.0 to 12.6 ± 2.1 ng/L). A mass balance of the WWTP located immediately upstream demonstrated unattenuated breakthrough of total fiproles through the WWTP with 25 ± 3 % of fipronil conversion to degradates, and only limited removal of total fiproles in the wetland (47 ± 13%). Extrapolation of local emissions (5–7 g/d) suggests nationwide annual fiprole loadings from WWTPs to U.S. surface waters on the order of about one half to three quarters of a metric tonne. The qualitative and quantitative data collected in this work have regulatory implications, and the sampling tools and analysis strategies described in this thesis have broad applicability in the assessment of risks posed by trace level environmental contaminants.
ContributorsSupowit, Samuel (Author) / Halden, Rolf U. (Thesis advisor) / Westerhoff, Paul (Committee member) / Johnson, Paul C (Committee member) / Arizona State University (Publisher)
Created2015
154251-Thumbnail Image.png
Description
This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints and explore the fundamental performance limitations of switched-mode power amplifiers

This work implements three switched mode power amplifier topologies namely inverse class-D (CMCD), push-pull class-E and inverse push-pull class-E, in a GaN-on-Si process for medium power level (5-10W) femto/pico-cells base-station applications. The presented power amplifiers address practical implementation design constraints and explore the fundamental performance limitations of switched-mode power amplifiers for cellular band. The designs are analyzed and compared with respect to non-idealities like finite on-resistance, finite-Q of inductors, bond-wire effects, input signal duty cycle, and supply and component variations. These architectures are designed for non-constant envelope inputs in the form of digitally modulated signals such as RFPWM, which undergo duty cycle variation. After comparing the three topologies, this work concludes that the inverse push-pull class-E power amplifier shows lower efficiency degradation at reduced duty cycles. For GaN based discrete power amplifiers which have less drain capacitance compared to GaAs or CMOS and where the switch loss is dominated by wire-bonds, an inverse push-pull class-E gives highest output power at highest efficiency. Push-pull class-E can give efficiencies comparable to inverse push-pull class-E in presence of bondwires on tuning the Zero-Voltage Switching (ZVS) network components but at a lower output power. Current-Mode Class-D (CMCD) is affected most by the presence of bondwires and gives least output power and efficiency compared to other two topologies. For systems dominated by drain capacitance loss or which has no bondwires, the CMCD and push-pull class-E gives better output power than inverse push-pull class-E. However, CMCD is more suitable for high breakdown voltage process.
ContributorsShukla, Shishir Ramasare (Author) / Kitchen, Jennifer N (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Trichopoulos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015