Matching Items (49)
Filtering by

Clear all filters

133654-Thumbnail Image.png
Description
Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle.

Widespread knowledge of fracture mechanics is mostly based on previous models that generalize crack growth in materials over several loading cycles. The objective of this project is to characterize crack growth that occurs in titanium alloys, specifically Grade 5 Ti-6Al-4V, at the sub-cycle scale, or within a single loading cycle. Using scanning electron microscopy (SEM), imaging analysis is performed to observe crack behavior at ten loading steps throughout the loading and unloading paths. Analysis involves measuring the incremental crack growth and crack tip opening displacement (CTOD) of specimens at loading ratios of 0.1, 0.3, and 0.5. This report defines the relationship between crack growth and the stress intensity factor, K, of the specimens, as well as the relationship between the R-ratio and stress opening level. The crack closure phenomena and effect of microcracks are discussed as they influence the crack growth behavior. This method has previously been used to characterize crack growth in Al 7075-T6. The results for Ti-6Al-4V are compared to these previous findings in order to strengthen conclusions about crack growth behavior.
ContributorsNazareno, Alyssa Noelle (Author) / Liu, Yongming (Thesis director) / Jiao, Yang (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171769-Thumbnail Image.png
Description
Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get

Electromigration, the net atomic diffusion associated with the momentum transfer from electrons moving through a material, is a major cause of device and component failure in microelectronics. The deleterious effects from electromigration rise with increased current density, a parameter that will only continue to increase as our electronic devices get smaller and more compact. Understanding the dynamic diffusional pathways and mechanisms of these electromigration-induced and propagated defects can further our attempts at mitigating these failure modes. This dissertation provides insight into the relationships between these defects and parameters of electric field strength, grain boundary misorientation, grain size, void size, eigenstrain, varied atomic mobilities, and microstructure.First, an existing phase-field model was modified to investigate the various defect modes associated with electromigration in an equiaxed non-columnar microstructure. Of specific interest was the effect of grain boundary misalignment with respect to current flow and the mechanisms responsible for the changes in defect kinetics. Grain size, magnitude of externally applied electric field, and the utilization of locally distinct atomic mobilities were other parameters investigated. Networks of randomly distributed grains, a common microstructure of interconnects, were simulated in both 2- and 3-dimensions displaying the effects of 3-D capillarity on diffusional dynamics. Also, a numerical model was developed to study the effect of electromigration on void migration and coalescence. Void migration rates were found to be slowed from compressive forces and the nature of the deformation concurrent with migration was examined through the lens of chemical potential. Void migration was also validated with previously reported theoretical explanations. Void coalescence and void budding were investigated and found to be dependent on the magnitude of interfacial energy and electric field strength. A grasp on the mechanistic pathways of electromigration-induced defect evolution is imperative to the development of reliable electronics, especially as electronic devices continue to miniaturize. This dissertation displays a working understanding of the mechanistic pathways interconnects can fail due to electromigration, as well as provide direction for future research and understanding.
ContributorsFarmer, William McHann (Author) / Ankit, Kumar (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jiao, Yang (Committee member) / McCue, Ian (Committee member) / Arizona State University (Publisher)
Created2022
171473-Thumbnail Image.png
Description
Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many

Applications such as heat exchangers, surface-based cellular structures, rotating blades, and waveguides rely on thin metal walls as crucial constituent elements of the structure. The design freedom enabled by laser powder bed fusion has led to an interest in exploiting this technology to further the performance of these components, many of which retain their as-built surface morphologies on account of their design complexity. However, there is limited understanding of how and why mechanical properties vary by wall thickness for specimens that are additively manufactured and maintain an as-printed surface finish. Critically, the contributions of microstructure and morphology to the mechanical behavior of thin wall laser powder bed fusion structures have yet to be systematically identified and decoupled. This work focuses on elucidating the room temperature quasi-static tensile and high cycle fatigue properties of as-printed, thin-wall Inconel 718 fabricated using laser powder bed fusion, with the aim of addressing this critical gap in the literature. Wall thicknesses studied range from 0.3 - 2.0 mm, and the effects of Hot Isostatic Pressing are also examined, with sheet metal specimens used as a baseline for comparison. Statistical analyses are conducted to identify the significance of the dependence of properties on wall thickness and Hot Isostatic Pressing, as well as to examine correlations of these properties to section area, porosity, and surface roughness. A thorough microstructural study is complemented with a first-of-its-kind study of surface morphology to decouple their contributions and identify underlying causes for observed changes in mechanical properties. This thesis finds that mechanical properties in the quasi-static and fatigue framework do not see appreciable declines until specimen thickness is under 0.75 mm in thickness. The added Hot Isostatic Pressing heat treatment effectively closed pores, recrystallized the grain structure, and provided a more homogenous microstructure that benefits the modulus, tensile strength, elongation, and fatigue performance at higher stresses. Stress heterogeneities, primarily caused by surface defects, negatively affected the thinner specimens disproportionately. Without the use of the Hot Isostatic Pressing, the grain structure remained much more refined and benefitted the yield strength and fatigue endurance limit.
ContributorsParadise, Paul David (Author) / Bhate, Dhruv (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
189347-Thumbnail Image.png
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging.

Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
ContributorsLakhavade, Sushant Sambhaji (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2023
171937-Thumbnail Image.png
Description
Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of

Microstructure refinement and alloy additions are considered potential routes to increase high temperature performance of existing metallic superalloys used under extreme conditions. Nanocrystalline (NC) Cu-10at%Ta exhibits such improvements over microstructurally unstable NC metals, leading to enhanced creep behavior compared to its coarse-grained (CG) counterparts. However, the low melting point of Cu compared to other FCC metals, e.g., Ni, might lead to an early onset of diffusional creep mechanisms. Thus, this research seeks to study the thermo-mechanical behavior and stability of hierarchical (prepared using arc-melting) and NC (prepared by collaborators through powder pressing and annealing) Ni-Y-Zr alloys where Zr is expected to provide solid solution and grain boundary strengthening in hierarchical and NC alloys, respectively, while Ni-Y and Ni-Zr intermetallic precipitates (IMCs) would provide kinetic stability. Hierarchical alloys had microstructures stable up to 1100 °C with ultrafine eutectic of ~300 nm, dendritic arm spacing of ~10 μm, and grain size ~1-2 mm. Room temperature hardness tests along with uniaxial compression performed at 25 and 600 °C revealed that microhardness and yield strength of hierarchical alloys with small amounts of Y (0.5-1wt%) and Zr (1.5-3 wt%) were comparable to Ni-superalloys, due to the hierarchical microstructure and potential presence of nanoscale IMCs. In contrast, NC alloys of the same composition were found to be twice as hard as the hierarchical alloys. Creep tests at 0.5 homologous temperature showed active Coble creep mechanisms in hierarchical alloys at low stresses with creep rates slower than Fe-based superalloys and dislocation creep mechanisms at higher stresses. Creep in NC alloys at lower stresses was only 20 times faster than hierarchical alloys, with the difference in grain size ranging from 10^3 to 10^6 times at the same temperature. These NC alloys showed enhanced creep properties over other NC metals and are expected to have rates equal to or improved over the CG hierarchical alloys with ECAP processing techniques. Lastly, the in-situ wide-angle x-ray scattering (WAXS) measurements during quasi-static and creep tests implied stresses being carried mostly by the matrix before yielding and in the primary creep stage, respectively, while relaxation was observed in Ni5Zr for both hierarchical and NC alloys. Beyond yielding and in the secondary creep stage, lattice strains reached a steady state, thereby, an equilibrium between plastic strain rates was achieved across different phases, so that deformation reaches a saturation state where strain hardening effects are compensated by recovery mechanisms.
ContributorsSharma, Shruti (Author) / Peralta, Pedro (Thesis advisor) / Alford, Terry (Committee member) / Jiao, Yang (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2022
171943-Thumbnail Image.png
Description
In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast

In the past decade, 2D materials especially transition metal dichalcogenides (TMDc), have been studied extensively for their remarkable optical and electrical properties arising from their reduced dimensionality. A new class of materials developed based on 2D TMDc that has gained great interest in recent years is Janus crystals. In contrast to TMDc, Janus monolayer consists of two different chalcogen atomic layers between which the transition metal layer is sandwiched. This structural asymmetry causes strain buildup or a vertically oriented electric field to form within the monolayer. The presence of strain brings questions about the materials' synthesis approach, particularly when strain begins to accumulate and whether it causes defects within monolayers.The initial research demonstrated that Janus materials could be synthesized at high temperatures inside a chemical vapor deposition (CVD) furnace. Recently, a new method (selective epitaxy atomic replacement - SEAR) for plasma-based room temperature Janus crystal synthesis was proposed. In this method etching and replacing top layer chalcogen atoms of the TMDc monolayer happens with reactive hydrogen and sulfur radicals. Based on Raman and photoluminescence studies, the SEAR method produces high-quality Janus materials. Another method used to create Janus materials was the pulsed laser deposition (PLD) technique, which utilizes the interaction of sulfur/selenium plume with monolayer to replace the top chalcogen atomic layer in a single step. The goal of this analysis is to characterize microscale defects that appear in 2D Janus materials after they are synthesized using SEAR and PLD techniques. Various microscopic techniques were used for this purpose, as well as to understand the mechanism of defect formation. The main mechanism of defect formation was proposed to be strain release phenomena. Furthermore, different chalcogen atom positions within the monolayer result in different types of defects, such as the appearance of cracks or wrinkles across monolayers. In addition to investigating sample topography, Kelvin probe force microscopy (KPFM) was used to examine its electrical properties to see if the formation of defects impacts work function. Further study directions have been suggested for identifying and characterizing defects and their formation mechanism in the Janus crystals to understand their fundamental properties.
ContributorsSinha, Shantanu (Author) / Tongay, Sefaattin (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2022
171814-Thumbnail Image.png
Description
Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials

Intelligent engineering designs require an accurate understanding of material behavior, since any uncertainties or gaps in knowledge must be counterbalanced with heightened factors of safety, leading to overdesign. Therefore, building better structures and pushing the performance of new components requires an improved understanding of the thermomechanical response of advanced materials under service conditions. This dissertation provides fundamental investigations of several advanced materials: thermoset polymers, a common matrix material for fiber-reinforced composites and nanocomposites; aluminum alloy 7075-T6 (AA7075-T6), a high-performance aerospace material; and ceramic matrix composites (CMCs), an advanced composite for extreme-temperature applications. To understand matrix interactions with various interfaces and nanoinclusions at their fundamental scale, the properties of thermoset polymers are studied at the atomistic scale. An improved proximity-based molecular dynamics (MD) technique for modeling the crosslinking of thermoset polymers is carefully established, enabling realistic curing simulations through its ability to dynamically and probabilistically perform complex topology transformations. The proximity-based MD curing methodology is then used to explore damage initiation and the local anisotropic evolution of mechanical properties in thermoset polymers under uniaxial tension with an emphasis on changes in stiffness through a series of tensile loading, unloading, and reloading experiments. Aluminum alloys in aerospace applications often require a fatigue life of over 109 cycles, which is well over the number of cycles that can be practically tested using conventional fatigue testing equipment. In order to study these high-life regimes, a detailed ultrasonic cycle fatigue study is presented for AA7075-T6 under fully reversed tension-compression loading. The geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms for ultrasonic fatigue across different fatigue regimes are investigated. Finally, because CMCs are utilized in extreme environments, oxidation plays an important role in their degradation. A multiphysics modeling methodology is thus developed to address the complex coupling between oxidation, mechanical stress, and oxygen diffusion in heterogeneous carbon fiber-reinforced CMC microstructures.
ContributorsSchichtel, Jacob (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Ghoshal, Anindya (Committee member) / Huang, Huei-Ping (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2022
171399-Thumbnail Image.png
Description
With the abundance of increasingly large datasets, the ability to predict the phase of high-entropy alloys (HEAs) based solely on elemental composition could become a reliable tool for the discovery of new HEAs. However, as the amount of data expands so does the computational time and resources required to train

With the abundance of increasingly large datasets, the ability to predict the phase of high-entropy alloys (HEAs) based solely on elemental composition could become a reliable tool for the discovery of new HEAs. However, as the amount of data expands so does the computational time and resources required to train predictive classical machine learning models. Quantum computers, which use quantum bits (qubits), could be the solution to overcoming these demands. Their ability to use quantum superposition and interference to perform calculations could be the key to handling large amounts of data. In this work, a hybrid quantum-classical machine learning algorithm is implemented on both quantum simulators and quantum processors to perform the supervised machine learning task. Their feasibility as a future tool for HEA discovery is evaluated based on the algorithm’s performance. An artificial neural network (ANN), run by classical computers, is also trained on the same data for performance comparison. The accuracy of the quantum-classical model was found to be comparable to the accuracy achieved by the classical ANN with a slight decrease in accuracy when ran on quantum hardware due to qubit susceptibility to decoherence. Future developments in the applied quantum machine learning method are discussed.
ContributorsBrown, Payden Lance (Author) / Zhuang, Houlong (Thesis advisor) / Ankit, Kumar (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2022
171428-Thumbnail Image.png
Description
Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to

Many important technologies, including electronics, computing, communications, optoelectronics, and sensing, are built on semiconductors. The band gap is a crucial factor in determining the electrical and optical properties of semiconductors. Beyond graphene, newly found two-dimensional (2D) materials have semiconducting bandgaps that range from the ultraviolet in hexagonal boron nitride to the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides (TMDs). These 2D materials were shown to have highly controllable bandgaps which can be controlled by alloying. Only a small number of TMDs and monochalcogenides have been alloyed, though, because alloying compromised the material's Van der Waals (Vdw) property and the stability of the host crystal lattice phase. Phase transition in 2D materials is an interesting phenomenon where work has been done only on few TMDs namely MoTe2, MoS2, TaS2 etc.In order to change the band gaps and move them towards the UV (ultraviolet) and IR (infrared) regions, this work has developed new 2D alloys in InSe by alloying them with S and Te at 10% increasing concentrations. As the concentration of the chalcogens (S and Te) increased past a certain point, a structural phase transition in the alloys was observed. However, pinpointing the exact concentration for phase change and inducing phase change using external stimuli will be a thing of the future. The resulting changes in the crystal structure and band gap were characterized using some basic characterization techniques like scanning electron microscopy (SEM), X-ray Diffraction (XRD), Raman and photoluminescence spectroscopy.
ContributorsYarra, Anvesh Sai (Author) / Tongay, Sefaattin (Thesis advisor) / Yang, Sui (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022
168458-Thumbnail Image.png
Description
Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst

Cellular metamaterials arouse broad scientific interests due to the combination of host material and structure together to achieve a wide range of physical properties rarely found in nature. Stochastic foam as one subset has been considered as a competitive candidate for versatile applications including heat exchangers, battery electrodes, automotive, catalyst devices, magnetic shielding, etc. For the engineering of the cellular foam architectures, closed-form models that can be used to predict the mechanical and thermal properties of foams are highly desired especially for the recently developed ultralight weight shellular architectures. Herein, for the first time, a novel packing three-dimensional (3D) hollow pentagonal dodecahedron (HPD) model is proposed to simulate the cellular architecture with hollow struts. An electrochemical deposition process is utilized to manufacture the metallic hollow foam architecture. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. Timoshenko beam theory is utilized to verify and explain the derived power coefficient relation. Our HPD model is proved to accurately capture both the topology and the physical properties of hollow stochastic foam. Understanding how the novel HPD model packing helps break the conventional impression that 3D pentagonal topology cannot fulfill the space as a representative volume element. Moreover, the developed HPD model can predict the mechanical and thermal properties of the manufactured hollow metallic foams and elucidating of how the inevitable manufacturing defects affect the physical properties of the hollow metallic foams. Despite of the macro-scale stochastic foam architecture, nano gradient gyroid lattices are studied using Molecular Dynamics (MD) simulation. The simulation result reveals that, unlike homogeneous architecture, gradient gyroid not only shows novel layer-by-layer deformation behavior, but also processes significantly better energy absorption ability. The deformation behavior and energy absorption are predictable and designable, which demonstrate its highly programmable potential.
ContributorsDai, Rui (Author) / Nian, Qiong (Thesis advisor) / Jiao, Yang (Committee member) / Kwon, Beomjin (Committee member) / Liu, Yongming (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2021