Matching Items (280)
Filtering by

Clear all filters

147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137206-Thumbnail Image.png
Description
Establishing a healthcare practice in the U. S. by a Mexican national involves many different steps at federal as well as state levels. The recent implementation of the Patient Protection and Affordable Care Act overhauls some requirements which include increased Medicaid eligibility as well as mandatory health insurance coverage. With

Establishing a healthcare practice in the U. S. by a Mexican national involves many different steps at federal as well as state levels. The recent implementation of the Patient Protection and Affordable Care Act overhauls some requirements which include increased Medicaid eligibility as well as mandatory health insurance coverage. With these changes taking place over the next few years, the need for healthcare providers will expand. Consequently, I look into the requirements of establishing an urgent care practice in the state of Arizona. Given that Phoenix has a 40.8% Hispanic population and that the Affordable Care Act will increase the coverage of this demographic, it is the city of focus for my analysis. In order to make access to the Arizona healthcare market more impartial and accessible to Mexican entrepreneurs, changes need to be made to the certification process of medical physicians who graduated from Mexican universities. The general disadvantage of Mexican physicians as compared to their U. S. counterparts comes in the form of increased certification times and additional processes. An equal playing field will allow the ease in movement of medical physicians between the U. S. and Mexico which will help meet the increased demand over the next few years. From ownership to taxation and medical billing and coding, this analysis focuses on the many requirements needed to establish an urgent care in Arizona.
ContributorsIbarra, Joseph Anthony (Author) / Carlos, Velez-Ibanez (Thesis director) / Cruz-Torres, Maria (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
148322-Thumbnail Image.png
Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

ContributorsPoweleit, Andrew Michael (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Chiu, Po-Lin (Committee member) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136547-Thumbnail Image.png
Description
The introduction of novel information technology within contemporary healthcare settings presents a critical juncture for the industry and thus lends itself to the importance of better understanding the impact of this emerging "health 2.0" landscape. Simply, how such technology may affect the healthcare system is still not fully realized, despite

The introduction of novel information technology within contemporary healthcare settings presents a critical juncture for the industry and thus lends itself to the importance of better understanding the impact of this emerging "health 2.0" landscape. Simply, how such technology may affect the healthcare system is still not fully realized, despite the ever-growing need to adopt it in order to serve a growing patient population. Thus, two pertinent questions are posed: is HIT useful and practical and, if so, what is the best way to implement it? This study examined the clinical implementation of specific instances of health information technology (HIT) so as to weigh its benefits and risks to ultimately construct a proposal for successful widespread adoption. Due to the poignancy of information analysis within HIT, Information Measurement Theory (IMT) was used to measure the effectiveness of current HIT systems as well as to elucidate improvements for future implementation. The results indicate that increased transparency, attention to patient-focused approaches and proper IT training will not only allow HIT to better serve the community, but will also decrease inefficient healthcare expenditure.
ContributorsMaietta, Myles Anthony (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description
Thesis Abstract: Cygnal The healthcare market plays a vital role in how our team worked with innovation space to design a product that fit user needs and could be a sustainable business. Whatever product we design is going to be dictated based off of how the insurance market will pay

Thesis Abstract: Cygnal The healthcare market plays a vital role in how our team worked with innovation space to design a product that fit user needs and could be a sustainable business. Whatever product we design is going to be dictated based off of how the insurance market will pay for it and how much we can charge for our product and services. In fact, the healthcare market is so incredibly unclear with outdated regulations that all of these fraud schemes and inflammatory prices are bound to happen. Stronger government involvement in this instance, I believe would help the issue. In reality, there are so many people taking advantage of the system that you cannot put the blame on anyone exploiting the system. What is clear though, is that they are taking advantage of a system that looks like it was set up to allow them to do so, and in that sense, Medicare is responsible for allowing this market to become warped. The healthcare industry played a vital role in our team for Innovation Space is completing our project. If we do not have a firm understanding on how the insurance market works, how much wheelchair companies are pricing chair components for, and how easily customers can see a financial benefit in switching to our product, it will not survive in the market place. That is why I as the business student am dedicating a lot of time in the final months of our project to make sure that our pricing is accurate, and feasible. The health insurance market, even if it is dysfunctional, will be ultimately paying for our product, and in business if you do not truly know your customer, you are bound to lose him. This paper uncovers why this market is warped and how to do business within it.
ContributorsMefford, Michael James (Author) / Peck, Sidnee (Thesis director) / Boradkar, Prasad (Committee member) / Barrett, The Honors College (Contributor) / Department of Economics (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
136139-Thumbnail Image.png
Description
Objective: To assess and quantify the effect of state’s price transparency regulations (hereafter, PTR) on healthcare pricing.

Data Sources: I use the Healthcare Cost and Utilization Project’s Nationwide Inpatient Sample (NIS) from 2000 to 2011. The NIS is a 20% sample of all inpatient claims. The Manhattan

Objective: To assess and quantify the effect of state’s price transparency regulations (hereafter, PTR) on healthcare pricing.

Data Sources: I use the Healthcare Cost and Utilization Project’s Nationwide Inpatient Sample (NIS) from 2000 to 2011. The NIS is a 20% sample of all inpatient claims. The Manhattan Institute supplied data on the availability of health savings accounts in each state. State PTR implementation dates were gathered by Hans Christensen, Eric Floyd, and Mark Maffett of University of Chicago’s Booth School of Business by contacting the health department, hospital association, or website controller in each state.

Study Design: The NIS data was collapsed by procedure, hospital, and year providing averages for the dependent variable, Cost, and a host of covariates. Cost is a product of Total Charges within the NIS and the hospital’s Cost to Charge ratio. A new binary variable, PTR, was defined as ‘0’ if the year was strictly less than the disclosure website’s implementation date, ‘1’ for afterwards, and missing for the year of implementation. Then, using multivariate OLS regression with fixed effect modeling, the change in cost from before to after the year of implementation is estimated.

Principal Findings: The analysis estimates the effect of PTR to decrease the average cost per procedure by 7%. Specifications identify within state, within hospital, and within procedure variation, and reports that 78% of the cost decrease is due to within-hospital, within-procedure price discounts. An additional model includes the interaction of PTR with the prevalence of health savings accounts (hereafter, HSAs) and procedure electivity. The results show that PTR lowers costs by an additional 3 percent with each additional 10 percentage point increase in the availability of HSAs. In contrast, the cost reductions from PTR were much smaller for procedures more frequently coded as elective.

Conclusions: The study concludes price transparency regulations can lead to a decrease in a procedure’s costs on average, primarily through price discounts and slightly through lower cost procedures, but not due to patients moving to cheaper hospitals. This implies that hospitals are taking initiative and lowering prices as the competition’s prices become publically available suggesting that hospitals – not patients – are the biggest users of price transparency websites. Hospitals are also finding some ways to provide cheaper alternatives to more expensive procedures. State regulators should evaluate if a better metric other than charge prices, such as expected out-of-pocket payments, would evoke greater patient participation. Furthermore, states with higher prevalence of HSAs experience greater effects of PTR as expected since patients with HSAs have greater incentives to lower their costs. Patients should expect a shift towards plans that offer these types of savings accounts since they’ve shown to have a reduction of health costs on average per procedure in states with higher prevalence of HSAs.
ContributorsSabol, Joshua Lawrence (Author) / Reiser, Mark (Thesis director) / Ketcham, Jonathan (Committee member) / Dassanayake, Maduranga (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136270-Thumbnail Image.png
Description
The 284 residents of the rural community of Cooper Landing, Alaska are subject to many health risks. Cooper Landing is home to a large population of older adults whom suffer from a disproportionate physician to population ratio. Limited rural health care infrastructure and poor physician to population ratios are not

The 284 residents of the rural community of Cooper Landing, Alaska are subject to many health risks. Cooper Landing is home to a large population of older adults whom suffer from a disproportionate physician to population ratio. Limited rural health care infrastructure and poor physician to population ratios are not conducive to primary health care implementation. Limited access to primary health care is linked to vast health disparities in rural communities like Cooper Landing. Preventive care and healthy lifestyle incentives have been largely overlooked as viable alternatives to primary health care access. In Cooper Landing, implementation of such incentives has proved to be either underutilized or unsuccessful by the private, public, and nonprofit sectors. To remedy this, the Rural Alaska Wellness Project (RAWP), a nonprofit organization, carries out its mission to promote health and wellness by providing a community resource for preventive care in Cooper Landing, Alaska. RAWP intends to increase the availability of the Cooper Landing School's gymnasium for community use, donate fitness equipment, implement TeleHealth initiatives, and host annual health fairs through grant funding, generous donations, and fundraising activities.
ContributorsNolan, Erin Sachi (Author) / Shockley, Gordon (Thesis director) / Hrncir, Shawn (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2015-05