Matching Items (255)
Filtering by

Clear all filters

161938-Thumbnail Image.png
Description
Reinforcement Learning(RL) algorithms have made a remarkable contribution in the eld of robotics and training human-like agents. On the other hand, Evolutionary Algorithms(EA) are not well explored and promoted to use in the robotics field. However, they have an excellent potential to perform well. In thesis work, various RL learning

Reinforcement Learning(RL) algorithms have made a remarkable contribution in the eld of robotics and training human-like agents. On the other hand, Evolutionary Algorithms(EA) are not well explored and promoted to use in the robotics field. However, they have an excellent potential to perform well. In thesis work, various RL learning algorithms like Q-learning, Deep Deterministic Policy Gradient(DDPG), and Evolutionary Algorithms(EA) like Harmony Search Algorithm(HSA) are tested for a customized Penalty Kick Robot environment. The experiments are done with both discrete and continuous action space for a penalty kick agent. The main goal is to identify which algorithm suites best in which scenario. Furthermore, a goalkeeper agent is also introduced to block the ball from reaching the goal post using the multiagent learning algorithm.
ContributorsTrivedi, Maitry Ronakbhai (Author) / Amor, Heni Ben (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
168369-Thumbnail Image.png
Description
Instructional prompts are a novel technique that can significantly improve the performance of natural language processing tasks by specifying the task instruction to the language model. This is the first paper that uses instructional prompts to improve performance of the question answering task in biomedical domain. This work makes two

Instructional prompts are a novel technique that can significantly improve the performance of natural language processing tasks by specifying the task instruction to the language model. This is the first paper that uses instructional prompts to improve performance of the question answering task in biomedical domain. This work makes two significant contributions. Firstly, a question answer dataset of 600K question answer pairs has been developed by using the medical textbook ‘Differential Diagnosis Primary Care’, which contains information on how to diagnose a patient by observing their disease symptoms. Secondly, a question answering language model augmented with instructional prompts has been developed by training on the medical information extracted from the book ‘Differential Diagnosis Primary Care’. Experiments have been conducted to demonstrate that it performs better than a normal question answering model that does not use instructional prompts. Instructional prompts are based on prompt tuning and prefix tuning, which are novel techniques which can help train language model to do specific downstream tasks by keeping majority of model parameters frozen, and only optimizing a small number of continuous task-specific vectors (called the prefixes).
ContributorsSaxena, Sharad (Author) / Baral, Chitta (Thesis advisor) / Blanco, Eduardo (Committee member) / Anwar, Saadat (Committee member) / Arizona State University (Publisher)
Created2021
168538-Thumbnail Image.png
Description
Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model

Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model a hybrid system which uses Collaborative Filtering and Content Based Recommendation. This system models user purchase behavior using weighted user-product preferences (explicit feedback) rather than binary user-product interactions (implicit feedback). Using this a novel sparse adversarial model, Sparse ReguLarized Generative Adversarial Network (SRLGAN), is developed for Cold-Start Recommendation. SRLGAN leverages the sparse user-purchase behavior which ensures training stability and avoids over-fitting on warm users. The performance of SRLGAN is evaluated on two popular datasets and demonstrate state-of-the-art results.
ContributorsShah, Aksheshkumar Ajaykumar (Author) / Venkateswara, Hemanth (Thesis advisor) / Berman, Spring (Thesis advisor) / Ladani, Leila J (Committee member) / Arizona State University (Publisher)
Created2022
171520-Thumbnail Image.png
Description
The drone industry is worth nearly 50 billion dollars in the public sector, and drone flight anomalies can cost up to 12 million dollars per drone. The project's objective is to explore various machine-learning techniques to identify anomalies in drone flight and express these anomalies effectively by creating relevant visualizations.

The drone industry is worth nearly 50 billion dollars in the public sector, and drone flight anomalies can cost up to 12 million dollars per drone. The project's objective is to explore various machine-learning techniques to identify anomalies in drone flight and express these anomalies effectively by creating relevant visualizations. The research goal is to solve the problem of finding anomalies inside drones to determine severity levels. The solution was visualization and statistical models, and the contribution was visualizations, patterns, models, and the interface.
ContributorsElenes Cazares, Jose R (Author) / Bryan, Chris (Thesis advisor) / Banerjee, Ayan (Committee member) / Gonzalez Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2022
171531-Thumbnail Image.png
Description
The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers,

The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers, and users to embark on the journey to solutions. Privacy is an individual problem that smart cities need to provide a collective solution for. The research focuses on understanding users’ data privacy preferences, what information they consider private, and what they need to protect. The research identifies the data security loopholes, data privacy roadblocks, and common opportunities for change to implement a proactive privacy-driven tech solution necessary to address and resolve tech-induced data privacy concerns among citizens. This dissertation aims at addressing the issue of data privacy in tech applications based on known methodologies to address the concerns they allow. Through this research, a data privacy survey on tech applications was conducted, and the results reveal users’ desires to become a part of the solution by becoming aware and taking control of their data privacy while using tech applications. So, this dissertation gives an overview of the data privacy issues in tech, discusses available data privacy basis, elaborates on the different steps needed to create a robust remedy to data privacy concerns in enabling users’ awareness and control, and proposes two privacy applications one as a data privacy awareness solution and the other as a representation of the privacy control framework to address data privacy concerns in smart cities.
ContributorsMusafiri Mimo, Edgard (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022
171574-Thumbnail Image.png
Description
Despite the rapid adoption of robotics and machine learning in industry, their application to scientific studies remains under-explored. Combining industry-driven advances with scientific exploration provides new perspectives and a greater understanding of the planet and its environmental processes. Focusing on rock detection, mapping, and dynamics analysis, I present technical approaches

Despite the rapid adoption of robotics and machine learning in industry, their application to scientific studies remains under-explored. Combining industry-driven advances with scientific exploration provides new perspectives and a greater understanding of the planet and its environmental processes. Focusing on rock detection, mapping, and dynamics analysis, I present technical approaches and scientific results of developing robotics and machine learning technologies for geomorphology and seismic hazard analysis. I demonstrate an interdisciplinary research direction to push the frontiers of both robotics and geosciences, with potential translational contributions to commercial applications for hazard monitoring and prospecting. To understand the effects of rocky fault scarp development on rock trait distributions, I present a data-processing pipeline that utilizes unpiloted aerial vehicles (UAVs) and deep learning to segment densely distributed rocks in several orders of magnitude. Quantification and correlation analysis of rock trait distributions demonstrate a statistical approach for geomorphology studies. Fragile geological features such as precariously balanced rocks (PBRs) provide upper-bound ground motion constraints for hazard analysis. I develop an offboard method and onboard method as complementary to each other for PBR searching and mapping. Using deep learning, the offboard method segments PBRs in point clouds reconstructed from UAV surveys. The onboard method equips a UAV with edge-computing devices and stereo cameras, enabling onboard machine learning for real-time PBR search, detection, and mapping during surveillance. The offboard method provides an efficient solution to find PBR candidates in existing point clouds, which is useful for field reconnaissance. The onboard method emphasizes mapping individual PBRs for their complete visible surface features, such as basal contacts with pedestals–critical geometry to analyze fragility. After PBRs are mapped, I investigate PBR dynamics by building a virtual shake robot (VSR) that simulates ground motions to test PBR overturning. The VSR demonstrates that ground motion directions and niches are important factors determining PBR fragility, which were rarely considered in previous studies. The VSR also enables PBR large-displacement studies by tracking a toppled-PBR trajectory, presenting novel methods of rockfall hazard zoning. I build a real mini shake robot providing a reverse method to validate simulation experiments in the VSR.
ContributorsChen, Zhiang (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Thesis advisor) / Bell, James (Committee member) / Berman, Spring (Committee member) / Christensen, Philip (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2022
171580-Thumbnail Image.png
Description
Event detection refers to the task of identifying event occurrences in a given natural language text. Event detection comprises two subtasks; recognizing event mention (event identification) and the type of event (event classification). Breaking from the sequence labeling and word classification approaches, this work models event detection, and its constituent

Event detection refers to the task of identifying event occurrences in a given natural language text. Event detection comprises two subtasks; recognizing event mention (event identification) and the type of event (event classification). Breaking from the sequence labeling and word classification approaches, this work models event detection, and its constituent subtasks of trigger identification and trigger classification, as independent sequence generation tasks. This work proposes a prompted multi-task generative model trained on event identification, classification, and combined event detection. The model is evaluated on on general-domain and biomedical-domain event detection datasets, achieving state-of-the-art results on the general-domain Roles Across Multiple Sentences (RAMS) dataset, establishing event detection benchmark performance on WikiEvents, and achieving competitive performance on the general-domain Massive Event Detection (MAVEN) dataset and the biomedical-domain Multi-Level Event Extraction (MLEE) dataset.
ContributorsAnantheswaran, Ujjwala (Author) / Baral, Chitta (Thesis advisor) / Kerner, Hannah (Committee member) / Gopalan, Nakul (Committee member) / Arizona State University (Publisher)
Created2022
171492-Thumbnail Image.png
Description
The future will be replete with Artificial Intelligence (AI) based agents closely collaborating with humans. Although it is challenging to construct such systems for real-world conditions, the Intelligent Tutoring System (ITS) community has proposed several techniques to work closely with students. However, there is a need to extend these systems

The future will be replete with Artificial Intelligence (AI) based agents closely collaborating with humans. Although it is challenging to construct such systems for real-world conditions, the Intelligent Tutoring System (ITS) community has proposed several techniques to work closely with students. However, there is a need to extend these systems outside the controlled environment of the classroom. More recently, Human-Aware Planning (HAP) community has developed generalized AI techniques for collaborating with humans and providing personalized support or guidance to the collaborators. In this thesis, the take learning from the ITS community is extend to construct such human-aware systems for real-world domains and evaluate them with real stakeholders. First, the applicability of HAP to ITS is demonstrated, by modeling the behavior in a classroom and a state-of-the-art tutoring system called Dragoon. Then these techniques are extended to provide decision support to a human teammate and evaluate the effectiveness of the framework through ablation studies to support students in constructing their plan of study (\ipos). The results show that these techniques are helpful and can support users in their tasks. In the third section of the thesis, an ITS scenario of asking questions (or problems) in active environments is modeled by constructing questions to elicit a human teammate's model of understanding. The framework is evaluated through a user study, where the results show that the queries can be used for eliciting the human teammate's mental model.
ContributorsGrover, Sachin (Author) / Kambhampati, Subbarao (Thesis advisor) / Smith, David (Committee member) / Srivastava, Sidhharth (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2022