Matching Items (7)
Filtering by

Clear all filters

147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132368-Thumbnail Image.png
Description
A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the

A defense-by-randomization framework is proposed as an effective defense mechanism against different types of adversarial attacks on neural networks. Experiments were conducted by selecting a combination of differently constructed image classification neural networks to observe which combinations applied to this framework were most effective in maximizing classification accuracy. Furthermore, the reasons why particular combinations were more effective than others is explored.
ContributorsMazboudi, Yassine Ahmad (Author) / Yang, Yezhou (Thesis director) / Ren, Yi (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171980-Thumbnail Image.png
Description
The increasing availability of data and advances in computation have spurred the development of data-driven approaches for modeling complex dynamical systems. These approaches are based on the idea that the underlying structure of a complex system can be discovered from data using mathematical and computational techniques. They also show promise

The increasing availability of data and advances in computation have spurred the development of data-driven approaches for modeling complex dynamical systems. These approaches are based on the idea that the underlying structure of a complex system can be discovered from data using mathematical and computational techniques. They also show promise for addressing the challenges of modeling high-dimensional, nonlinear systems with limited data. In this research expository, the state of the art in data-driven approaches for modeling complex dynamical systems is surveyed in a systemic way. First the general formulation of data-driven modeling of dynamical systems is discussed. Then several representative methods in feature engineering and system identification/prediction are reviewed, including recent advances and key challenges.
ContributorsShi, Wenlong (Author) / Ren, Yi (Thesis advisor) / Hong, Qijun (Committee member) / Jiao, Yang (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
193641-Thumbnail Image.png
Description
Human-robot interactions can often be formulated as general-sum differential games where the equilibrial policies are governed by Hamilton-Jacobi-Isaacs (HJI) equations. Solving HJI PDEs faces the curse of dimensionality (CoD). While physics-informed neural networks (PINNs) alleviate CoD in solving PDEs with smooth solutions, they fall short in learning discontinuous solutions due

Human-robot interactions can often be formulated as general-sum differential games where the equilibrial policies are governed by Hamilton-Jacobi-Isaacs (HJI) equations. Solving HJI PDEs faces the curse of dimensionality (CoD). While physics-informed neural networks (PINNs) alleviate CoD in solving PDEs with smooth solutions, they fall short in learning discontinuous solutions due to their sampling nature. This causes PINNs to have poor safety performance when they are applied to approximate values that are discontinuous due to state constraints. This dissertation aims to improve the safety performance of PINN-based value and policy models. The first contribution of the dissertation is to develop learning methods to approximate discontinuous values. Specifically, three solutions are developed: (1) hybrid learning uses both supervisory and PDE losses, (2) value-hardening solves HJIs with increasing Lipschitz constant on the constraint violation penalty, and (3) the epigraphical technique lifts the value to a higher-dimensional state space where it becomes continuous. Evaluations through 5D and 9D vehicle and 13D drone simulations reveal that the hybrid method outperforms others in terms of generalization and safety performance. The second contribution is a learning-theoretical analysis of PINN for value and policy approximation. Specifically, by extending the neural tangent kernel (NTK) framework, this dissertation explores why the choice of activation function significantly affects the PINN generalization performance, and why the inclusion of supervisory costate data improves the safety performance. The last contribution is a series of extensions of the hybrid PINN method to address real-time parameter estimation problems in incomplete-information games. Specifically, a Pontryagin-mode PINN is developed to avoid costly computation for supervisory data. The key idea is the introduction of a costate loss, which is cheap to compute yet effectively enables the learning of important value changes and policies in space-time. Building upon this, a Pontryagin-mode neural operator is developed to achieve state-of-the-art (SOTA) safety performance across a set of differential games with parametric state constraints. This dissertation demonstrates the utility of the resultant neural operator in estimating player constraint parameters during incomplete-information games.
ContributorsZhang, Lei (Author) / Ren, Yi (Thesis advisor) / Si, Jennie (Committee member) / Berman, Spring (Committee member) / Zhang, Wenlong (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2024
168584-Thumbnail Image.png
Description
Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among

Uncertainty quantification is critical for engineering design and analysis. Determining appropriate ways of dealing with uncertainties has been a constant challenge in engineering. Statistical methods provide a powerful aid to describe and understand uncertainties. This work focuses on applying Bayesian methods and machine learning in uncertainty quantification and prognostics among all the statistical methods. This study focuses on the mechanical properties of materials, both static and fatigue, the main engineering field on which this study focuses. This work can be summarized in the following items: First, maintaining the safety of vintage pipelines requires accurately estimating the strength. The objective is to predict the reliability-based strength using nondestructive multimodality surface information. Bayesian model averaging (BMA) is implemented for fusing multimodality non-destructive testing results for gas pipeline strength estimation. Several incremental improvements are proposed in the algorithm implementation. Second, the objective is to develop a statistical uncertainty quantification method for fatigue stress-life (S-N) curves with sparse data.Hierarchical Bayesian data augmentation (HBDA) is proposed to integrate hierarchical Bayesian modeling (HBM) and Bayesian data augmentation (BDA) to deal with sparse data problems for fatigue S-N curves. The third objective is to develop a physics-guided machine learning model to overcome limitations in parametric regression models and classical machine learning models for fatigue data analysis. A Probabilistic Physics-guided Neural Network (PPgNN) is proposed for probabilistic fatigue S-N curve estimation. This model is further developed for missing data and arbitrary output distribution problems. Fourth, multi-fidelity modeling combines the advantages of low- and high-fidelity models to achieve a required accuracy at a reasonable computation cost. The fourth objective is to develop a neural network approach for multi-fidelity modeling by learning the correlation between low- and high-fidelity models. Finally, conclusions are drawn, and future work is outlined based on the current study.
ContributorsChen, Jie (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Mignolet, Marc (Committee member) / Ren, Yi (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2022
Description
Autonomous Driving (AD) systems are being researched and developed actively in recent days to solve the task of controlling the vehicles safely without human intervention. One method to solve such task is through deep Reinforcement Learning (RL) approach. In deep RL, the main objective is to find an optimal control

Autonomous Driving (AD) systems are being researched and developed actively in recent days to solve the task of controlling the vehicles safely without human intervention. One method to solve such task is through deep Reinforcement Learning (RL) approach. In deep RL, the main objective is to find an optimal control behavior, often called policy performed by an agent, which is AD system in this case. This policy is usually learned through Deep Neural Networks (DNNs) based on the observations that the agent perceives along with rewards feedback received from environment.However, recent studies demonstrated the vulnerability of such control policies learned through deep RL against adversarial attacks. This raises concerns about the application of such policies to risk-sensitive tasks like AD. Previous adversarial attacks assume that the threats can be broadly realized in two ways: First one is targeted attacks through manipu- lation of the agent’s complete observation in real time and the other is untargeted attacks through manipulation of objects in environment. The former assumes full access to the agent’s observations at almost all time, while the latter has no control over outcomes of attack. This research investigates the feasibility of targeted attacks through physical adver- sarial objects in the environment, a threat that combines the effectiveness and practicality. Through simulations on one of the popular AD systems, it is demonstrated that a fixed optimal policy can be malfunctioned over time by an attacker e.g., performing an unintended self-parking, when an adversarial object is present. The proposed approach is formulated in such a way that the attacker can learn a dynamics of the environment and also utilizes common knowledge of agent’s dynamics to realize the attack. Further, several experiments are conducted to show the effectiveness of the proposed attack on different driving scenarios empirically. Lastly, this work also studies robustness of object location, and trade-off between the attack strength and attack length based on proposed evaluation metrics.
ContributorsBuddareddygari, Prasanth (Author) / Yang, Yezhou (Thesis advisor) / Ren, Yi (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2021