Matching Items (327)
Filtering by

Clear all filters

147614-Thumbnail Image.png
Description

This project did a deep dive on AI, business applications for AI and then my team and I built an AI model to better understand shipping patterns and inefficiencies of different porting regions.

ContributorsFreudenberger, Evan Martin (Author) / Wiedmer, Robert (Thesis director) / Duarte, Brett (Committee member) / Thunderbird School of Global Management (Contributor) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147631-Thumbnail Image.png
Description

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria

Drylands, though one of the largest biomes, are also one of the most understudied biomes on the planet. This leaves scientists with limited understanding of unique life forms that have adapted to live in these arid environments. One such life form is the hypolithic microbial community; these are autotrophic cyanobacteria colonies that can be found on the underside of translucent rocks in deserts. With the light that filters through the rock above them, the microbes can photosynthesize and fix carbon from the atmosphere into the soil. In this study I looked at hypolith-like rock distribution in the Namib Desert by using image recognition software. I trained a Mask R-CNN network to detect quartz rock in images from the Gobabeb site. When the method was analyzed using the entire data set, the distribution of rock sizes between the manual annotations and the network predictions was not similar. When evaluating rock sizes smaller than 0.56 cm2 the method showed statistical significance in support of being a promising data collection method. With more training and corrective effort on the network, this method shows promise to be an accurate and novel way to collect data efficiently in dryland research.

ContributorsCollins, Catherine (Author) / Throop, Heather (Thesis director) / Das, Jnaneshwar (Committee member) / Aparecido, Luiza (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149622-Thumbnail Image.png
Description
Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human problem solving and describes its implementation within one such theory

Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human problem solving and describes its implementation within one such theory of cognitive architecture--ICARUS. The document begins by reviewing the standard theory of problem solving, along with how previous versions of ICARUS have incorporated and expanded on it. Next it discusses some limitations of the existing mechanism and proposes four extensions that eliminate these limitations, elaborate the framework along interesting dimensions, and bring it into closer alignment with human problem-solving abilities. After this, it presents evaluations on four domains that establish the benefits of these extensions. The results demonstrate the system's ability to solve problems in various domains and its generality. In closing, it outlines related work and notes promising directions for additional research.
ContributorsTrivedi, Nishant (Author) / Langley, Patrick W (Thesis advisor) / VanLehn, Kurt (Committee member) / Kambhampati, Subbarao (Committee member) / Arizona State University (Publisher)
Created2011
149607-Thumbnail Image.png
Description
In the current millennium, extensive use of computers and the internet caused an exponential increase in information. Few research areas are as important as information extraction, which primarily involves extracting concepts and the relations between them from free text. Limitations in the size of training data, lack of lexicons and

In the current millennium, extensive use of computers and the internet caused an exponential increase in information. Few research areas are as important as information extraction, which primarily involves extracting concepts and the relations between them from free text. Limitations in the size of training data, lack of lexicons and lack of relationship patterns are major factors for poor performance in information extraction. This is because the training data cannot possibly contain all concepts and their synonyms; and it contains only limited examples of relationship patterns between concepts. Creating training data, lexicons and relationship patterns is expensive, especially in the biomedical domain (including clinical notes) because of the depth of domain knowledge required of the curators. Dictionary-based approaches for concept extraction in this domain are not sufficient to effectively overcome the complexities that arise because of the descriptive nature of human languages. For example, there is a relatively higher amount of abbreviations (not all of them present in lexicons) compared to everyday English text. Sometimes abbreviations are modifiers of an adjective (e.g. CD4-negative) rather than nouns (and hence, not usually considered named entities). There are many chemical names with numbers, commas, hyphens and parentheses (e.g. t(3;3)(q21;q26)), which will be separated by most tokenizers. In addition, partial words are used in place of full words (e.g. up- and downregulate); and some of the words used are highly specialized for the domain. Clinical notes contain peculiar drug names, anatomical nomenclature, other specialized names and phrases that are not standard in everyday English or in published articles (e.g. "l shoulder inj"). State of the art concept extraction systems use machine learning algorithms to overcome some of these challenges. However, they need a large annotated corpus for every concept class that needs to be extracted. A novel natural language processing approach to minimize this limitation in concept extraction is proposed here using distributional semantics. Distributional semantics is an emerging field arising from the notion that the meaning or semantics of a piece of text (discourse) depends on the distribution of the elements of that discourse in relation to its surroundings. Distributional information from large unlabeled data is used to automatically create lexicons for the concepts to be tagged, clusters of contextually similar words, and thesauri of distributionally similar words. These automatically generated lexical resources are shown here to be more useful than manually created lexicons for extracting concepts from both literature and narratives. Further, machine learning features based on distributional semantics are shown to improve the accuracy of BANNER, and could be used in other machine learning systems such as cTakes to improve their performance. In addition, in order to simplify the sentence patterns and facilitate association extraction, a new algorithm using a "shotgun" approach is proposed. The goal of sentence simplification has traditionally been to reduce the grammatical complexity of sentences while retaining the relevant information content and meaning to enable better readability for humans and enhanced processing by parsers. Sentence simplification is shown here to improve the performance of association extraction systems for both biomedical literature and clinical notes. It helps improve the accuracy of protein-protein interaction extraction from the literature and also improves relationship extraction from clinical notes (such as between medical problems, tests and treatments). Overall, the two main contributions of this work include the application of sentence simplification to association extraction as described above, and the use of distributional semantics for concept extraction. The proposed work on concept extraction amalgamates for the first time two diverse research areas -distributional semantics and information extraction. This approach renders all the advantages offered in other semi-supervised machine learning systems, and, unlike other proposed semi-supervised approaches, it can be used on top of different basic frameworks and algorithms.
ContributorsJonnalagadda, Siddhartha Reddy (Author) / Gonzalez, Graciela H (Thesis advisor) / Cohen, Trevor A (Committee member) / Greenes, Robert A (Committee member) / Fridsma, Douglas B (Committee member) / Arizona State University (Publisher)
Created2011
149373-Thumbnail Image.png
Description
Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown,

Natural Language Processing is a subject that combines computer science and linguistics, aiming to provide computers with the ability to understand natural language and to develop a more intuitive human-computer interaction. The research community has developed ways to translate natural language to mathematical formalisms. It has not yet been shown, however, how to automatically translate different kinds of knowledge in English to distinct formal languages. Most of the recent work presents the problem that the translation method aims to a specific formal language or is hard to generalize. In this research, I take a first step to overcome this difficulty and present two algorithms which take as input two lambda-calculus expressions G and H and compute a lambda-calculus expression F. The expression F returned by the first algorithm satisfies F@G=H and, in the case of the second algorithm, we obtain G@F=H. The lambda expressions represent the meanings of words and sentences. For each formal language that one desires to use with the algorithms, the language must be defined in terms of lambda calculus. Also, some additional concepts must be included. After doing this, given a sentence, its representation and knowing the representation of several words in the sentence, the algorithms can be used to obtain the representation of the other words in that sentence. In this work, I define two languages and show examples of their use with the algorithms. The algorithms are illustrated along with soundness and completeness proofs, the latter with respect to typed lambda-calculus formulas up to the second order. These algorithms are a core part of a natural language semantics system that translates sentences from English to formulas in different formal languages.
ContributorsAlvarez Gonzalez, Marcos (Author) / Baral, Chitta (Thesis advisor) / Lee, Joohyung (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2010
149310-Thumbnail Image.png
Description
The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about

The fields of pattern recognition and machine learning are on a fundamental quest to design systems that can learn the way humans do. One important aspect of human intelligence that has so far not been given sufficient attention is the capability of humans to express when they are certain about a decision, or when they are not. Machine learning techniques today are not yet fully equipped to be trusted with this critical task. This work seeks to address this fundamental knowledge gap. Existing approaches that provide a measure of confidence on a prediction such as learning algorithms based on the Bayesian theory or the Probably Approximately Correct theory require strong assumptions or often produce results that are not practical or reliable. The recently developed Conformal Predictions (CP) framework - which is based on the principles of hypothesis testing, transductive inference and algorithmic randomness - provides a game-theoretic approach to the estimation of confidence with several desirable properties such as online calibration and generalizability to all classification and regression methods. This dissertation builds on the CP theory to compute reliable confidence measures that aid decision-making in real-world problems through: (i) Development of a methodology for learning a kernel function (or distance metric) for optimal and accurate conformal predictors; (ii) Validation of the calibration properties of the CP framework when applied to multi-classifier (or multi-regressor) fusion; and (iii) Development of a methodology to extend the CP framework to continuous learning, by using the framework for online active learning. These contributions are validated on four real-world problems from the domains of healthcare and assistive technologies: two classification-based applications (risk prediction in cardiac decision support and multimodal person recognition), and two regression-based applications (head pose estimation and saliency prediction in images). The results obtained show that: (i) multiple kernel learning can effectively increase efficiency in the CP framework; (ii) quantile p-value combination methods provide a viable solution for fusion in the CP framework; and (iii) eigendecomposition of p-value difference matrices can serve as effective measures for online active learning; demonstrating promise and potential in using these contributions in multimedia pattern recognition problems in real-world settings.
ContributorsNallure Balasubramanian, Vineeth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Vovk, Vladimir (Committee member) / Arizona State University (Publisher)
Created2010
149551-Thumbnail Image.png
Description
This Thesis contends that if the designer of a non-biological machine (android) can establish that the machine exhibits certain specified behaviors or characteristics, then there is no principled reason to deny that the machine can be considered a legal person. The thesis also states that given a related but not

This Thesis contends that if the designer of a non-biological machine (android) can establish that the machine exhibits certain specified behaviors or characteristics, then there is no principled reason to deny that the machine can be considered a legal person. The thesis also states that given a related but not necessarily identical set of characteristics, there is no principled reason to deny that the non-biological machine can make a claim to a level of moral personhood. It is the purpose of my analysis to delineate some of the specified behaviors required for each of these conditions so as to provide guidance and understanding to designers seeking to establish criteria for creation of such machines. Implicit in the stated thesis are assumptions concerning what is meant by a non-biological machine. I use analytic functionalism as a mechanism to establish a framework within which to operate. In order to develop this framework it is necessary to provide an analysis of what currently constitutes the attributes of a legal person, and to likewise examine what are the roots of the claim to moral personhood. This analysis consists of a treatment of the concept of legal personhood starting with the Greek and Roman views and tracing the line of development through the modern era. This examination then explores at a more abstract level what it means to be a person. Next, I examine law's role as a normative system, placing it within the context of the previous discussions. Then, criteria such as autonomy and intentionality are discussed in detail and are related to the over all analysis of the thesis. Following this, moral personhood is examined using the animal rights movement of the last thirty years as an argument by analogy to the question posed by the thesis. Finally, all of the above concepts are combined in a way that will provide a basis for analyzing and testing future assertions that a non-biological entity has a plausible claim for legal or moral personhood. If such an entity exhibits the type of intentionality and autonomy which humans view as the foundation of practical reason, in combination with other indicia of sentience described by "folk psychology", analytic functionalism suggests that there is no principled reason to deny the android's claim to rights.
ContributorsCalverley, David J (Author) / Armendt, Brad (Thesis advisor) / McGregor, Joan (Committee member) / Askland, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
147905-Thumbnail Image.png
Description

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a

This paper is centered on the use of generative adversarial networks (GANs) to convert or generate RGB images from grayscale ones. The primary goal is to create sensible and colorful versions of a set of grayscale images by training a discriminator to recognize failed or generated images and training a generator to attempt to satisfy the discriminator. The network design is described in further detail below; however there are several potential issues that arise including the averaging of a color for certain images such that small details in an image are not assigned unique colors leading to a neutral blend. We attempt to mitigate this issue as much as possible.

ContributorsMasud, Abdullah Bin (Co-author) / Koleber, Keith (Co-author) / Lobo, Ian (Co-author) / Markabawi, Jah (Co-author) / Yang, Yingzhen (Thesis director) / Wang, Yancheng (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149452-Thumbnail Image.png
Description
Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a

Cyber Physical Systems (CPSs) are systems comprising of computational systems that interact with the physical world to perform sensing, communication, computation and actuation. Common examples of these systems include Body Area Networks (BANs), Autonomous Vehicles (AVs), Power Distribution Systems etc. The close coupling between cyber and physical worlds in a CPS manifests in two types of interactions between computing systems and the physical world: intentional and unintentional. Unintentional interactions result from the physical characteristics of the computing systems and often cause harm to the physical world, if the computing nodes are close to each other, these interactions may overlap thereby increasing the chances of causing a Safety hazard. Similarly, due to mobile nature of computing nodes in a CPS planned and unplanned interactions with the physical world occur. These interactions represent the behavior of a computing node while it is following a planned path and during faulty operations. Both of these interactions change over time due to the dynamics (motion) of the computing node and may overlap thereby causing harm to the physical world. Lack of proper modeling and analysis frameworks for these systems causes system designers to use ad-hoc techniques thereby further increasing their design and development time. The thesis addresses these problems by taking a holistic approach to model Computational, Physical and Cyber Physical Interactions (CPIs) aspects of a CPS and proposes modeling constructs for them. These constructs are analyzed using a safety analysis algorithm developed as part of the thesis. The algorithm computes the intersection of CPIs for both mobile as well as static computing nodes and determines the safety of the physical system. A framework is developed by extending AADL to support these modeling constructs; the safety analysis algorithm is implemented as OSATE plug-in. The applicability of the proposed approach is demonstrated by considering the safety of human tissue during the operations of BAN, and the safety of passengers traveling in an Autonomous Vehicle.
ContributorsKandula, Sailesh Umamaheswara (Author) / Gupta, Sandeep (Thesis advisor) / Lee, Yann Hang (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2010
131386-Thumbnail Image.png
Description
Collecting accurate collective decisions via crowdsourcing
is challenging due to cognitive biases, varying
worker expertise, and varying subjective scales. This
work investigates new ways to determine collective decisions
by prompting users to provide input in multiple
formats. A crowdsourced task is created that aims
to determine ground-truth by collecting information in
two different ways: rankings and numerical

Collecting accurate collective decisions via crowdsourcing
is challenging due to cognitive biases, varying
worker expertise, and varying subjective scales. This
work investigates new ways to determine collective decisions
by prompting users to provide input in multiple
formats. A crowdsourced task is created that aims
to determine ground-truth by collecting information in
two different ways: rankings and numerical estimates.
Results indicate that accurate collective decisions can
be achieved with less people when ordinal and cardinal
information is collected and aggregated together
using consensus-based, multimodal models. We also
show that presenting users with larger problems produces
more valuable ordinal information, and is a more
efficient way to collect an aggregate ranking. As a result,
we suggest input-elicitation to be more widely considered
for future work in crowdsourcing and incorporated
into future platforms to improve accuracy and efficiency.
ContributorsKemmer, Ryan Wyeth (Author) / Escobedo, Adolfo (Thesis director) / Maciejewski, Ross (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05