Matching Items (18)
Filtering by

Clear all filters

149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
151493-Thumbnail Image.png
Description
Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties

Healthy mitochondria are essential for cell survival. Described herein is the synthesis of a family of novel aminoquinone antioxidants designed to alleviate oxidative stress and prevent the impairment of cellular function. In addition, a library of bleomycin disaccharide analogues has also been synthesized to better probe the tumor targeting properties of bleomycin. The first study involves the synthesis of a benzoquinone natural product and analogues that closely resemble the redox core of the natural product geldanamycin. The synthesized 5-amino-3-tridecyl-1,4-benzoquinone antioxidants were tested for their ability to protect Friedreich's ataxia (FRDA) lymphocytes from induced oxidative stress. Some of the analogues synthesized conferred cytoprotection in a dose-dependent manner in FRDA lymphocytes at micromolar concentrations. The biological assays suggest that the modification of the 2-hydroxyl and N-(3-carboxypropyl) groups in the natural product can improve its antioxidant activity and significantly enhance its ability to protect mitochondrial function under conditions of oxidative stress. The second project focused on the synthesis of a library of bleomycin disaccharide-dye conjugates and monitored their cellular uptake by fluorescence microscopy. The studies reveal that the position of the carbamoyl group plays an important role in modulating the cellular uptake of the disaccharide. It also led to the discovery of novel disaccharides with improved tumor selectivity.
ContributorsMathilakathu Madathil, Manikandadas (Author) / Hecht, Sidney M. (Thesis advisor) / Rose, Seth (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2013
151229-Thumbnail Image.png
Description
It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be

It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be linked with dysfunctional complexes in the mitochondrial respiratory chain, increased oxidative stress, and potential cell death. Increased understanding of the pathophysiology of this disease has enabled the development of various therapeutic strategies aimed at restoring mitochondrial respiration. This thesis contains an analysis of the biological activity of several classes of antioxidants against oxidative stress induced by diethyl maleate in Friedreich's Ataxia lymphocytes and CEM leukemia cells. Analogues of vitamin E α-tocopherol have been shown to protect cells under oxidative stress. However, these same analogues show various levels of inhibition towards the electron transport chain complex I. Bicyclic pyridinols containing a ten carbon substituent provided favorable cytoprotection. N-hydroxy-4-pyridone compounds were observed to provide little protection. Similarly, analogues of CoQ10 in the form of pyridinol and pyrimidinol compounds also preserved cell viability at low concentrations.
ContributorsJaruvangsanti, Jennifer (Author) / Hecht, Sidney (Thesis advisor) / Woodbury, Neal (Committee member) / Skibo, Edward (Committee member) / Arizona State University (Publisher)
Created2012
149372-Thumbnail Image.png
Description
A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and

A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and a high binding affinity to about six equivalents of Cu2+. The goal of this study is to investigate the Cu2+ binding sites in SmbP and to understand how Cu2+ stabilizes the protein. Preliminary folding experiments indicated that Cu2+ greatly stabilizes SmbP. In this study, protein folding data from circular dichroism (CD) spectroscopy was used to elucidate the role of Cu2+ in stabilizing SmbP structure against unfolding induced by decreased pH, increased temperature, and chemical denaturants. The significant stabilization effects of Cu2+ were demonstrated by the observation that Cu2+-SmbP remained fully folded under extreme environmental conditions, such as acidic pH, 96 °C, and 8 M urea. Also, it was shown that Cu2+ is able to induce the refolding of unfolded SmbP in acidic solutions. These findings imply that the coordination of Cu2+ to histidine residues is responsible for the stabilization effects. The crystal structure of SmbP without Cu2+ has been determined. However, attempts to crystallize Cu2+-SmbP have not been successful. In this study, multidimensional NMR experiments were conducted in order to gain additional information regarding the Cu2+-SmbP structure, in particular its metal binding sites. Unambiguous resonance assignments were successfully made. Cα secondary chemical shifts confirmed that SmbP has a four α-helical structure. A Cu2+-protein titration experiment monitored by NMR indicated a top-to-bottom, sequential metal binding pattern for SmbP. In addition, several bioinformatics tools were used to complement the experimental approach and identity of the ligands in Cu2+-binding sites in SmbP is proposed.
ContributorsYan, Qin (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
135431-Thumbnail Image.png
Description
The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the

The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the cobalt porphyrin’s in organic solutions gassed with carbon dioxide. The cobalt porphyrin yielded larger catalytic currents, but at the same potential as the electrode. This difference, along with the significant changes in the porphyrin’s electronic, optical and redox properties, showed that its capabilities for carbon dioxide reduction can be controlled by metal ions, allotting it unique opportunities for applications in solar fuels catalysis and photochemical reactions.
ContributorsSkibo, Edward Kim (Author) / Moore, Gary (Thesis director) / Woodbury, Neal (Committee member) / School of Molecular Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
191019-Thumbnail Image.png
Description
This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and

This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and synthesis. Photoinhibition leads to the dissipation energy and lower yield, and is a major obstacle to preventing green energy from competing with fossil fuels. However, the urgent need for alternative energy sources is driven by soaring energy consumption and rising atmospheric carbon dioxide levels. When developed, MEPS can contribute to a carbon capture technology while helping with energy demands. It is thought that if PSII electron flux can be replaced with an alternative source photosynthesis could be enhanced for more effective production. MEPS has the potential to address these challenges by serving as a carbon capture technology while meeting energy demands. The idea is to replace PSII electron flux with an alternative source, which can be enhanced for higher yields in light intensities not tolerated with PSII. This research specifically focuses on creating the initiation of electron flux between the cathode and the MEPS cells while controlling and measuring the system in real time. The successful proof-of-concept work shows that MEPS can indeed generate high-light-dependent current at intensities up to 2050 µmol photons m^‒2 s^‒1, delivering 113 µmol electrons h^‒1 mg-chl^‒1. The results were further developed to characterize redox tuning for electron delivery of flux to the photosynthetic electron transport chain and redox-based kinetic analysis to model the limitations of the MEPS system.
ContributorsLewis, Christine Michelle (Author) / Torres, César I (Thesis advisor) / Fromme, Petra (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2023
156515-Thumbnail Image.png
Description
The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed

The fundamental photophysics of fluorescent probes must be understood when the probes are used in biological applications. The photophysics of BODIPY dyes inside polymeric micelles and rhodamine dyes covalently linked to proteins were studied. Hydrophobic boron-dipyrromethene (BODIPY) dyes were noncovalently encapsulated inside polymeric micelles. Absorbance and fluorescence measurements were employed to study the photophysics of these BODIPY dyes in the micellar environments. Amphiphilic polymers with a hydrophobic character and low Critical Micelle Concentration (CMC) protected BODIPYS from the aqueous environment. Moderate dye loading conditions did not result in ground-state dimerization, and only fluorescence lifetimes and brightnesses were affected. However, amphiphilic polymers with a hydrophilic character and high CMC did not protect the BODIPYS from the aqueous environment with concomitant ground-state dimerization and quenching of the fluorescence intensity, lifetime, and brightnesses even at low dye loading conditions. At the doubly-labeled interfaces of Escherichia coli (E. coli) DNA processivity β clamps, the interchromophric interactions of four rhodamine dyes were studied: tetramethylrhodamine (TMR), TMR C6, Alexa Fluor 488, and Alexa Fluor 546. Absorbance and fluorescence measurements were performed on doubly-labeled β clamps with singly-labeled β clamps and free dyes as controls. The absorbance measurements revealed that both TMR and TMR C6 readily formed H-dimers (static quenching) at the doubly-labeled interfaces of the β clamps. However, the TMR with a longer linker (TMR C6) also displayed a degree of dynamic quenching. For Alexa Fluor 546 and Alexa Fluor 488, there were no clear signs of dimerization in the absorbance scans. However, the fluorescence properties (fluorescence intensity, lifetime, and anisotropy) of the Alexa Fluor dyes significantly changed when three methodologies were employed to disrupt the doubly-labeled interfaces: 1) the addition of sodium dodecyl sulfate (SDS) detergent to denature the proteins, 2) the addition of clamp loader (γ complex) to open one of the two interfaces, and 3) the use of subunit exchange to decrease the number of dyes per interface. These fluorescence measurements indicated that for the Alexa Fluor dyes, other interchromophoric interactions were present such as dynamic quenching and homo-Förster Resonance Energy Transfer (homo-FRET).
ContributorsDonaphon, Bryan Matthew (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2018
154824-Thumbnail Image.png
Description
The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small

The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small molecule, and the use of microsomes to study the stability of compounds derived to treat mitochondrial diseases.

Nicotine addiction is a worldwide epidemic because nicotine is one of the most widely used addictive substances. It is linked to early death, typically in the form of heart or lung disease. A new vaccine conjugate against nicotine held within a DNA tetrahedron delivery system has been studied. For this purpose, several strands of DNA, conjugated with a modified dTpT having three or six carbon atom alkynyl linkers, have been synthesized. These strands have later been conjugated to three separate hapten small molecules to analyze which conjugates formed would be optimal for further testing in vivo.

Mitochondrial diseases are hard to treat, given that there are so many different variations to treat. There is no one compound that can treat all mitochondrial and neurodegenerative diseases; however, improvements can be made to compounds currently under study to improve the conditions of those afflicted. A significant issue leading to compounds failing in clinical trials is insufficient metabolic stability. Many compounds have good biological activity, but once introduced to an animal, are not stable enough to have any effect. Here, several synthesized compounds have been evaluated for metabolic stability, and several showed improved stability, while maintaining biological activity.
ContributorsSchmierer, Margaret (Author) / Hecht, Sidney M. (Thesis advisor) / Allen, James (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
153946-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity

Glycosaminoglycans (GAGs) are a class of complex biomolecules comprised of linear, sulfated polysaccharides whose presence on cell surfaces and in the extracellular matrix involve them in many physiological phenomena as well as in interactions with pathogenic microbes. Decorin binding protein A (DBPA), a Borrelia surface lipoprotein involved in the infectivity of Lyme disease, is responsible for binding GAGs found on decorin, a small proteoglycan present in the extracellular matrix. Different DBPA strains have notable sequence heterogeneity that results in varying levels of GAG-binding affinity. In this dissertation, the structures and GAG-binding mechanisms for three strains of DBPA (B31 and N40 DBPAs from B. burgdorferi and PBr DBPA from B. garinii) are studied to determine why each strain has a different affinity for GAGs. These three strains have similar topologies consisting of five α-helices held together by a hydrophobic core as well as two long flexible segments: a linker between helices one and two and a C-terminal tail. This structural arrangement facilitates the formation of a basic pocket below the flexible linker which is the primary GAG-binding epitope. However, this GAG-binding site can be occluded by the flexible linker, which makes the linker a negative regulator of GAG-binding. ITC and NMR titrations provide KD values that show PBr DBPA binds GAGs with higher affinity than B31 and N40 DBPAs, while N40 binds with the lowest affinity of the three. Work in this thesis demonstrates that much of the discrepancies seen in GAG affinities of the three DBPAs can be explained by the amino acid composition and conformation of the linker. Mutagenesis studies show that B31 DBPA overcomes the pocket obstruction with the BXBB motif in its linker while PBr DBPA has a retracted linker that exposes the basic pocket as well as a secondary GAG-binding site. N40 DBPA, however, does not have any evolutionary modifications to its structure to enhance GAG binding which explains its lower affinity for GAGs. GMSA and ELISA assays, along with NMR PRE experiments, confirm that structural changes in the linker do affect GAG-binding and, as a result, the linker is responsible for regulating GAG affinity.
ContributorsMorgan, Ashli M (Author) / Wang, Xu (Thesis advisor) / Allen, James (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2015