Matching Items (15)
Filtering by

Clear all filters

133051-Thumbnail Image.png
Description
As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a

As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a growing infant by providing the necessary nutrients, growth hormones and antibodies to promote digestive health, growth, and a strong immune system. The Developmental Origins of Health and Disease Theory (DOHaD) is a theory that suggests a growing fetus and nursing child's nutrients and immune system are dependent on the mother's exposure to nutrients and toxins. Studies have shown a positive correlation between the length of nursing and a child's overall health through life. In addition, consuming an enriched diet after weaning builds a strong immunological and nutritional basis from which the child can grow. This leads to improvements in a child's overall health, which has beneficial long-term effects on morbidity and mortality. This project applied the theory to two Middle Horizon (AD500-1100) individuals from Akapana, Tiwanaku, in the Lake Titicaca Basin, Bolivia. Stable nitrogen and carbon isotope analysis was applied to first molar serial samples of these two individuals to determine weaning age and early childhood diet. Both individuals were male; one male died in adolescence between the age of 9-15 years, and the other died as an elderly adult around the age of 50-59 years. The results showed that the male who died in adulthood was provisioned with supplemental and post-weaning foods high in animal protein, and received breast milk until around 37 months of age. The adolescent male was weaned between 11-12 months and consumed a diet dominated by C4 plants \u2014 most likely maize \u2014 with much less protein. The correlation between prolonged access to breast milk and a healthier and more nutritious childhood diet and longevity are consistent with the theory discussed above.
ContributorsCampbell, Sibella Sweelin (Author) / Knudson, Kelly (Thesis director) / Marsteller, Sara (Committee member) / Greenwald, Alexandra (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations

Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations of structural changes and difficulty in folding polypeptides into defined protein structures. Recent studies have shown that nanoscale architectures created by DNA nanotechnology can be used to mimic various protein functions, including some membrane proteins. However, mimicking the highly sophisticated structural dynamics of membrane proteins by DNA nanostructures is still in its infancy, mainly due to lack of transmembrane DNA nanostructures that can mimic the dynamic behavior, ubiquitous to membrane proteins. Here, I demonstrate design of dynamic DNA nanostructures to mimic two important class of membrane proteins. First, I describe a DNA nanostructure that inserts through lipid membrane and dynamically reconfigures upon sensing a membrane-enclosed DNA or RNA target, thereby transducing biomolecular information across the lipid membrane similar to G-protein coupled receptors (GPCR’s). I use the non-destructive sensing property of our GPCR-mimetic nanodevice to sense cancer associated micro-RNA biomarkers inside exosomes without the need of RNA extraction and amplification. Second, I demonstrate a fully reversibly gated DNA nanopore that mimics the ligand mediated gating of ion channel proteins. The 20.4 X 20.4 nm-wide channel of the DNA nanopore allows timed delivery of folded proteins across synthetic and biological membranes. These studies represent early examples of dynamic DNA nanostructures in mimicking membrane protein functions. I envision that they will be used in synthetic biology to create artificial cells containing GPCR-like and ion channel-like receptors, in site-specific drug or vaccine delivery and highly sensitive biosensing applications.
ContributorsDey, Swarup (Author) / Yan, Hao (Thesis advisor) / Hariadi, Rizal F (Thesis advisor) / Liu, Yan (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021
171971-Thumbnail Image.png
Description
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid

Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid (DNA) interactions to detect 10 different analytes including antibiotics such as tetracyclines and erythromycin. The biosensor harnesses the multi-turnover collateral cleavage activity of Cas12a to provide signal amplification in less than an hour that can be monitored using fluorescence as well as on paper based diagnostic devices. In addition, the functionality of this assay was preserved when testing tap water and wastewater spiked with doxycycline. Overall, this biosensor has potential to expand the range of small molecule detection and can be used to identify environmental contaminants. In second part of the dissertation, interactions between nonribosomal peptide synthetases (NRPS) and ribonucleic acid (RNA) were utilized for programming the synthesis of nonribosomal peptides. RNA scaffolds harboring peptide binding aptamers and interconnected using kissing loops to guide the assembly of NRPS modules modified with corresponding aptamer-binding peptides were built. A successful chimeric assembly of Ent synthetase modules was shown that was characterized by the production of Enterobactin siderophore. It was found that the programmed RNA/NRPS assembly could achieve up to 60% of the yield of wild-type biosynthetic pathway of the iron-chelator enterobactin. Finally, a cas12a-based detection method for discriminating short tandem repeats where a toehold exchange mechanism was designed to distinguish different numbers of repeats found in Huntington’s disease, Spinocerebellar ataxia type 10 and type 36. It was observed that the system discriminates well when lesser number of repeats are present and provides weaker resolution as the size of DNA strands increases. Additionally, the system can identify Kelch13 mutations such as P553L, N458Y and F446I from the wildtype sequence for Artemisinin resistance detection. This dissertation demonstrates the great utility of harnessing protein-nucleic acid interactions to construct biomolecular devices for detecting clinically relevant nucleic acid mutations, a variety of small molecule analyte and programming the production of useful molecules.
ContributorsChaudhary, Soma (Author) / Green, Alexander (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171835-Thumbnail Image.png
Description
Molecular recognition forms the basis of all protein interactions, and therefore is crucial for maintaining biological functions and pathways. It can be governed by many factors, but in case of proteins and peptides, the amino acids sequences of the interacting entities play a huge role. It is molecular recognition that

Molecular recognition forms the basis of all protein interactions, and therefore is crucial for maintaining biological functions and pathways. It can be governed by many factors, but in case of proteins and peptides, the amino acids sequences of the interacting entities play a huge role. It is molecular recognition that helps a protein identify the correct sequences residues necessary for an interaction, among the vast number of possibilities from the combinatorial sequence space. Therefore, it is fundamental to study how the interacting amino acid sequences define the molecular interactions of proteins. In this work, sparsely sampled peptide sequences from the combinatorial sequence space were used to study the molecular recognition observed in proteins, especially monoclonal antibodies. A machine learning based approach was used to study the molecular recognition characteristics of 11 monoclonal antibodies, where a neural network (NN) was trained on data from protein binding experiments performed on high-throughput random-sequence peptide microarrays. The use of random-sequence microarrays allowed for the peptides to be sparsely sampled from sequence space. Post-training, a sequence vs. binding relationship was deduced by the NN, for each antibody. This in silico relationship was then extended to larger libraries of random peptides, as well as to the biologically relevant sequences (target antigens, and proteomes). The NN models performed well in predicting the pertinent interactions for 6 out of the 11 monoclonal antibodies, in all aspects. The interactions of the other five monoclonal antibodies could not be predicted well by the models, due to their poor recognition of the residues that were omitted from the array. Furthermore, NN predicted sequence vs. binding relationships for 3 other proteins were experimentally probed using surface plasmon resonance (SPR). This was done to explore the relationship between the observed and predicted binding to the arrays and the observed binding on different assay platforms. It was noted that there was a general motif dependent correlation between predicted and SPR-measured binding. This study also indicated that a combined reiterative approach using in silico and in vitro techniques is a powerful tool for optimizing the selectivity of the protein-binding peptides.
ContributorsBisarad, Pritha (Author) / Woodbury, Neal W (Thesis advisor) / Green, Alexander A (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2022
187524-Thumbnail Image.png
Description
Without a doubt, protein is the most crucial biomolecule performing life and biological functions of any living cell. Profiling various protein expression in individual cells has raised a great interest for scientist and researchers over decades in attempts to reveal cell-to-cell variation, which used to be masked in many previous

Without a doubt, protein is the most crucial biomolecule performing life and biological functions of any living cell. Profiling various protein expression in individual cells has raised a great interest for scientist and researchers over decades in attempts to reveal cell-to-cell variation, which used to be masked in many previous population average measurement methods. Immunofluorescence (IF) has been a well-established single cell protein analysis technique as for its fast and high-resolution detection and localization, simple and adaptable workflows, and affordable instrumentation. However, inadequate detection sensitivity and multiplexing capability are the two limitation of this platform that remain incompletely addressed in many decades. In this work, several improvements have been proposed and demonstrated to improve existing drawbacks of conventional immunofluorescence. An azide-based linker featured in the novel fluorescent probes synthesis has enable iterative protein staining on the same tissue sample, which subsequently increase the multiplex capacity of IF. Additionally, the multiple fluorophore introduction to the proteins target via either layer by layer biotin-cleavable fluorescent streptavidin or tyramide signal amplification (TSA) have significantly increase the detection sensitivity of the platform. With these advances, IF has the potential to detect, image and quantify up to 100 protein targets in single cell in the tissue sample. In addition of desirable features of IF, these improvements have further turned the technique into a powerful proteomic study platform for not only research setting but also clinical study setting. It is anticipated this highly sensitive and multiplexed, renovated IF method will soon be translated into biomedical studies.
ContributorsPham, Thai Huy (Author) / Guo, Jia (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2023
Description
Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a

Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a ꞵ-cyclodextrin platform can be modified through a few-step reaction process to develop a ꞵ-cyclodextrin-DBCO-GFP nanobody. The findings of this few-step reaction support the general approach of conjugating the ꞵ-cyclodextrin derivative to GPF nanobody for developing a cyclodextrin antiviral scaffold.
ContributorsTaniguchi, Tohma (Author) / Hariadi, Rizal (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Sasmal, Ranjan (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
165233-Thumbnail Image.png
Description
The study of death and dying brings greater understanding of a society and its values and customs, as well as what it means to be human. Western death culture in the modern age bears little resemblance to the world which came before it, when death was frequent, and people were

The study of death and dying brings greater understanding of a society and its values and customs, as well as what it means to be human. Western death culture in the modern age bears little resemblance to the world which came before it, when death was frequent, and people were forced to reckon with its immediacy. This paper seeks to analyze the ways in which a society responds to death by using the example of the Western world during the 19th century, mostly focusing on Victorian England and the United States before the start of World War I. Discussions of the periods which preceded and followed the 19th century will place it in its proper context, demonstrating how death culture changes over time in response to socioeconomic trends and shifts. The conclusion will provide an analysis of the significance of this period of western history to the drastic changes of the 20th century and the attitudes and practices surrounding death and dying today.
ContributorsDunlop, Emily (Author) / Knudson, Kelly (Thesis director) / Bolhofner, Katelyn (Committee member) / Marsteller, Sara (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
187717-Thumbnail Image.png
Description
Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables the fabrication of nearly arbitrary DNA architectures with nanoscale precision,

Molecular tessellation research aims to elucidate the underlying principles that govern intricate patterns in nature and to leverage these principles to create precise and ordered structures across multiple scales, thereby facilitating the emergence of novel functionalities. DNA origami technology enables the fabrication of nearly arbitrary DNA architectures with nanoscale precision, which can serve as excellent building blocks for the construction of tessellation patterns. However, the size and complexity of DNA origami tessellation systems are currently limited by several unexplored factors relevant to the accuracy of essential design parameters, the applicability of design strategies, and the compatibility between different tiles. Here, a general design and assembly method are described for creating DNA origami tiles that grow into tessellation patterns with micrometer-scale order and nanometer-scale precision. A critical design parameter, interhelical distance (D), was identified, which determined the conformation of monomer tiles and the outcome of tessellation. Finely tuned D facilitated the accurate geometric design of monomer tiles with minimized curvature and improved tessellation capability. To demonstrate the generality of the design method, 9 tile geometries and 15 unique tile designs were generated. The designed tiles were assembled into single-crystalline lattices ranging from tens to hundreds of square micrometers with micrometer-scale, nearly defect-free areas readily visualized by atomic force microscopy. Two strategies were applied to further increase the complexity of DNA origami tessellation, including reducing the symmetry of monomer tiles and co-assembling tiles of various geometries. The designed 6 complex tilings that includes 5 Archimedean tilings and a 12-fold quasicrystal tiling yielded various tiling patterns that great in size and quality, indicating the robustness of the optimized tessellation system. The described design and assembly approach can also be employed to create square DNA origami units for algorithmic self-assembly. As the square units assembled and expanded, they executed the binary function XOR, which generated the Sierpinski triangular pattern according to the predetermined instructions. This study will promote DNA-templated, programmable molecular and material patterning and open up new opportunities for applications in metamaterial engineering, nanoelectronics, and nanolithography.
ContributorsTang, Yue (Author) / Yan, Hao (Thesis advisor) / Guo, Jia (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2023
191500-Thumbnail Image.png
Description
Proteins are among the important macromolecules in living systems, with diverse biological functions and properties that make them greatly interesting to study in both structure and function. The chemical synthesis of proteins allows researchers to incorporate a wide variety of post-translation modifications that can diversify protein functions. It also allows

Proteins are among the important macromolecules in living systems, with diverse biological functions and properties that make them greatly interesting to study in both structure and function. The chemical synthesis of proteins allows researchers to incorporate a wide variety of post-translation modifications that can diversify protein functions. It also allows the incorporation of many noncanonical amino acids that enable the study of protein structure and function, as well as the control of their activity in living cells. The work presented in this dissertation focuses on two DNA-templated chemical synthesis approaches for the synthesis of proteins: i) DNA-templated native chemical ligation (NCL), and ii) DNA-templated click chemistry. NCL and its extended version has been used as a powerful tool to obtain proteins; however, it still struggles to make longer proteins due to aggregation and poor yield. To address these issues, a DNA-templated approach is being developed where two peptide fragments are brought into proximity by an oligonucleotide to facilitate the NCL reaction. The sequential ligation of the peptide fragments will result in full-length proteins with increased yield and improved solubility. This research involves synthesis of small molecule auxiliaries, thioester peptides, DNA-peptide conjugates, and ligation of peptides through NCL. This method has the potential to be applied to synthesize large hydrophobic proteins. A DNA-templated click chemistry method was also reported where duplex DNA was utilized as a template for enhancing the copper click reaction between peptide fragments into functional mini-proteins. As a proof of principle, peptide fragments were synthesized with click functional groups and conjugated with distinct DNA handles through a disulfide exchange bioconjugation reaction. The DNA-peptide conjugates were assembled with the template to bring the two peptides into proximity and enhance the effective molarities of the functional groups. The peptides were coupled efficiently using a copper click reaction. The designed DNA-templated method is being implemented to synthesize a designed mini-protein (called LCB1), which can bind tightly to the spike protein of SARS-CoV-2 and inhibit its interaction with the human angiotensin-converting enzyme 2 (ACE2) receptor. This method allows researchers to introduce multiple non-natural amino acids in the protein and has the potential to extend to larger proteins, synthetic polymers, and DNA-peptide biomaterials.
ContributorsAl-Amin, Md (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Gould, Ian (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2024
157620-Thumbnail Image.png
Description
The increasing pervasiveness of infections caused by multidrug-resistant bacteria (MDR) is a major global health issue that has been further exacerbated by the dearth of antibiotics developed over the past 40 years. Drug-resistant bacteria have led to significant morbidity and mortality, and ever-increasing antibiotic resistance threatens to reverse many of

The increasing pervasiveness of infections caused by multidrug-resistant bacteria (MDR) is a major global health issue that has been further exacerbated by the dearth of antibiotics developed over the past 40 years. Drug-resistant bacteria have led to significant morbidity and mortality, and ever-increasing antibiotic resistance threatens to reverse many of the medical advances enabled by antibiotics over the last 40 years. The traditional strategy for combating these superbugs involves the development of new antibiotics. Yet, only two new classes of antibiotics have been introduced to the clinic over the past two decades, and both failed to combat broad spectrum gram-negative bacteria. This situation demands alternative strategies to combat drug-resistant superbugs. Herein, these dissertation reports the development of potent antibacterials based on biomolecule-encapsulated two-dimensional inorganic materials, which combat multidrug-resistant bacteria using alternative mechanisms of strong physical interactions with bacterial cell membrane. These systems successfully eliminate all members of the ‘Superbugs’ set of pathogenic bacteria, which are known for developing antibiotic resistance, providing an alternative to the limited ‘one bug-one drug’ approach that is conventionally used. Furthermore, these systems demonstrate a multimodal antibacterial killing mechanism that induces outer membrane destabilization, unregulated ion movement across the membranes, induction of oxidative stress, and finally apoptotic-like cell death. In addition, a peptide-encapsulation of the two-dimensional material successfully eliminated biofilms and persisters at micromolar concentrations. Overall, these novel systems have great potential as next-generation antimicrobial agents for eradication of broad spectrum multidrug-resistant bacteria.
ContributorsDebnath, Abhishek (Author) / Green, Alexander A (Thesis advisor) / Liu, Yan (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2019