Matching Items (2)
Filtering by

Clear all filters

130844-Thumbnail Image.png
Description

Spinal cord injury (SCI) is characterized by severe tissue damage and extreme inflammation involving prolonged invasion of inflammatory cells. Following SCI, there is long-term disability and treatment is limited. We previously demonstrated that sustained subdural infusion of the anti-inflammatory protein, Serp-1, significantly improved functional recovery and reduced inflammatory cell invasion

Spinal cord injury (SCI) is characterized by severe tissue damage and extreme inflammation involving prolonged invasion of inflammatory cells. Following SCI, there is long-term disability and treatment is limited. We previously demonstrated that sustained subdural infusion of the anti-inflammatory protein, Serp-1, significantly improved functional recovery and reduced inflammatory cell invasion following SCI. We hypothesized that sustained delivery of immune-modulating Serp-1 using a chitosan-collagen hydrogel would demonstrate therapeutic benefits and reduce damage following forceps crush-induced SCI. Following the dorsal column crush injury, we observed that for rats treated with high-dose (100 μg/50 μL) Serp-1, functional motor improvement was observed. There was also a more pronounced neuroprotective effect in comparison to the low-dose (10 μg/50 μL) treatment, which was likely attributable to suppression of local inflammation. Conversely, sustained infusion of low-dose Serp-1 CCH did not enhance recovery. Thus, sustained delivery of immune-modulating Serp-1 through a chitosan-collagen hydrogel exhibits neuroprotective potential following acute SCI.

ContributorsSchutz, Lauren (Author) / Lucas, Alexandra R. (Thesis director) / Yaron, Jordan R. (Committee member) / Karis, John P. (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
133785-Thumbnail Image.png
Description
This study was conducted to examine the potential effects of exercise training on partial spinal cord injury on locomotor recovery in juvenile rats. Three groups were tested, where three female Long-Evans rats 10-12 weeks of age were studied for their locomotion. All animals underwent a T8-T9 laminectomy and two of

This study was conducted to examine the potential effects of exercise training on partial spinal cord injury on locomotor recovery in juvenile rats. Three groups were tested, where three female Long-Evans rats 10-12 weeks of age were studied for their locomotion. All animals underwent a T8-T9 laminectomy and two of the three in each group received a dorsal, partial spinal cord injury. Locomotion was then analyzed every week, over 8-10 weeks. One of the two injured animals was given open access to a wheel after 2 weeks for voluntary exercise training. The results of this study suggested that injured animals displayed more irregular stepping patterns, larger hindlimb bases of support, greater and more variable interpaw distances, slower hindlimb speed, and increased dependency of swing-phase duty cycle on hindlimb speed. Trained animals displayed quicker recovery of stepping patterns, stepping of the hindpaw in relation to the preceding ipsilateral forepaw, and higher swing-duty cycle dependency on hindlimb speed in comparison to injured animals that did not receive exercise training. Due to a small sample size, there was a large amount of variation between individual animals in most parameters. These results are considered to be potential effects that may be seen in further study with a larger sample size. The research team will continue the research project to examine changes in neural pathways in the spinal cord and the effects of exercise on recovery after injury.
ContributorsSleem, Tamara Hatem (Author) / Abbas, James (Thesis director) / Hamm, Thomas (Committee member) / School of Human Evolution and Social Change (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05