Matching Items (9)
Filtering by

Clear all filters

136153-Thumbnail Image.png
Description
Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and

Along with the number of technologies that have been introduced over a few years ago, gesture-based human-computer interactions are becoming the new phase in encompassing the creativity and abilities for users to communicate and interact with devices. Because of how the nature of defining free-space gestures influence user's preference and the length of usability of gesture-driven devices, defined low-stress and intuitive gestures for users to interact with gesture recognition systems are necessary to consider. To measure stress, a Galvanic Skin Response instrument was used as a primary indicator, which provided evidence of the relationship between stress and intuitive gestures, as well as user preferences towards certain tasks and gestures during performance. Fifteen participants engaged in creating and performing their own gestures for specified tasks that would be required during the use of free-space gesture-driven devices. The tasks include "activation of the display," scroll, page, selection, undo, and "return to main menu." They were also asked to repeat their gestures for around ten seconds each, which would give them time and further insight of how their gestures would be appropriate or not for them and any given task. Surveys were given at different time to the users: one after they had defined their gestures and another after they had repeated their gestures. In the surveys, they ranked their gestures based on comfort, intuition, and the ease of communication. Out of those user-ranked gestures, health-efficient gestures, given that the participants' rankings were based on comfort and intuition, were chosen in regards to the highest ranked gestures.
ContributorsLam, Christine (Author) / Walker, Erin (Thesis director) / Danielescu, Andreea (Committee member) / Barrett, The Honors College (Contributor) / Ira A. Fulton School of Engineering (Contributor) / School of Arts, Media and Engineering (Contributor) / Department of English (Contributor) / Computing and Informatics Program (Contributor)
Created2015-05
137541-Thumbnail Image.png
Description
Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices

Over the course of computing history there have been many ways for humans to pass information to computers. These different input types, at first, tended to be used one or two at a time for the users interfacing with computers. As time has progressed towards the present, however, many devices are beginning to make use of multiple different input types, and will likely continue to do so. With this happening, users need to be able to interact with single applications through a variety of ways without having to change the design or suffer a loss of functionality. This is important because having only one user interface, UI, across all input types is makes it easier for the user to learn and keeps all interactions consistent across the application. Some of the main input types in use today are touch screens, mice, microphones, and keyboards; all seen in Figure 1 below. Current design methods tend to focus on how well the users are able to learn and use a computing system. It is good to focus on those aspects, but it is important to address the issues that come along with using different input types, or in this case, multiple input types. UI design for touch screens, mice, microphones, and keyboards each requires satisfying a different set of needs. Due to this trend in single devices being used in many different input configurations, a "fully functional" UI design will need to address the needs of multiple input configurations. In this work, clashing concerns are described for the primary input sources for computers and suggests methodologies and techniques for designing a single UI that is reasonable for all of the input configurations.
ContributorsJohnson, David Bradley (Author) / Calliss, Debra (Thesis director) / Wilkerson, Kelly (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
135081-Thumbnail Image.png
Description
Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a

Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a procedural generation algorithm that makes every encounter unique. This is then complemented with the path system where each enemy has unique rhythm patterns to give them different types of combat opportunities. In Last Hymn, the player arrives on a train at the World's End Train Station where they are greeted by a mysterious figure and guided to the Forest where they witness the end of the world and find themselves back at the train station before they left for the Forest. With only a limited amount of time per cycle of the world, the player must constantly weigh the opportunity cost of each decision, and only with careful thought, conviction, and tenacity will the player find a conclusion from the never ending cycle of rebirth. Blending both Shinto architecture and modern elements, Last Hymn used a "fantasy-chic" aesthetic in order to provide memorable locations and dissonant imagery. As the player explores they will struggle against puzzles and dynamic, rhythm based combat while trying to unravel the mystery of the world's looping time. Last Hymn was designed to develop innovative and dynamic new solutions for combat, exploration, and mapping. From this project all three team members were able to grow their software development and game design skills, achieving goals like improved level design, improved asset pipelines while simultaneously aiming to craft an experience that will be unforgettable for players everywhere.
ContributorsPinho, Tyler (Co-author) / Le, Jefferson (Co-author) / Spence, Curtis (Co-author) / Nelson, Brian (Thesis director) / Walker, Erin (Committee member) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154120-Thumbnail Image.png
Description
Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach

Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach by using interactive network visualization to represent relevant search results for online programming discussion forums.

I conducted user study to evaluate the effectiveness of this approach. Results show that users were able to identify relevant information more precisely via visual interface as compared to traditional list based approach. Network visualization demonstrated effective search-result navigation support to facilitate user’s tasks and improved query quality for successive queries. Subjective evaluation also showed that visualizing search results conveys more semantic information in efficient manner and makes searching more effective.
ContributorsMehta, Vishal Vimal (Author) / Hsiao, Ihan (Thesis advisor) / Walker, Erin (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2015
154253-Thumbnail Image.png
Description
Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of

Embedded assessment constantly updates a model of the student as the student works on instructional tasks. Accurate embedded assessment allows students, instructors and instructional systems to make informed decisions without requiring the student to stop instruction and take a test. This thesis describes the development and comparison of several student models for Dragoon, an intelligent tutoring system. All the models were instances of Bayesian Knowledge Tracing, a standard method. Several methods of parameterization and calibration were explored using two recently developed toolkits, FAST and BNT-SM that replaces constant-valued parameters with logistic regressions. The evaluation was done by calculating the fit of the models to data from human subjects and by assessing the accuracy of their assessment of simulated students. The student models created using node properties as subskills were superior to coarse-grained, skill-only models. Adding this extra level of representation to emission parameters was superior to adding it to transmission parameters. Adding difficulty parameters did not improve fit, contrary to standard practice in psychometrics.
ContributorsGrover, Sachin (Author) / VanLehn, Kurt (Thesis advisor) / Walker, Erin (Committee member) / Shiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2015
154915-Thumbnail Image.png
Description
EMBRACE (Enhanced Moved By Reading to Accelerate Comprehension in English) is an IPad application that uses the Moved By Reading strategy to help improve the reading comprehension skills of bilingual (Spanish speaking) English Language Learners (ELLs). In EMBRACE, students read the text of a story and then move images corresponding

EMBRACE (Enhanced Moved By Reading to Accelerate Comprehension in English) is an IPad application that uses the Moved By Reading strategy to help improve the reading comprehension skills of bilingual (Spanish speaking) English Language Learners (ELLs). In EMBRACE, students read the text of a story and then move images corresponding to the text that they read. According to the embodied cognition theory, this grounds reading comprehension in physical experiences and thus is more engaging.

In this thesis, I used the log data from 20 students in grades 2-5 to design a skill model for a student using EMBRACE. A skill model is the set of knowledge components that a student needs to master in order to comprehend the text in EMBRACE. A good skill model will improve understanding of the mistakes students make and thus aid in the design of useful feedback for the student.. In this context, the skill model consists of vocabulary and syntax associated with the steps that students performed. I mapped each step in EMBRACE to one or more skills (vocabulary and syntax) from the model. After every step, the skill level is updated in the model. Thus, if a student answered the previous step incorrectly, the corresponding skills are decremented and if the student answered the previous question correctly, the corresponding skills are incremented, through the Bayesian Knowledge Tracing algorithm.

I then correlated the students’ predicted scores (computed from their skill levels) to their posttest scores. I evaluated the students’ predicted scores (computed from their skill levels) by comparing them to their posttest scores. The two sets of scores were not highly correlated, but the results gave insights into potential improvements that could be made to the system with respect to user interaction, posttest scores and modeling algorithm.
ContributorsFurtado, Nicolette Dolores (Author) / Walker, Erin (Thesis advisor) / Hsiao, Ihan (Committee member) / Restrepo, M. Adelaida (Committee member) / Arizona State University (Publisher)
Created2016
153137-Thumbnail Image.png
Description
Study in user experience design states that there is a considerable gap between users and designers. Collaborative design and empathetic design methods attempt to make a strong relationship between these two. In participatory design activities, projective `make tools' are required for users to show their thoughts. This research is designed

Study in user experience design states that there is a considerable gap between users and designers. Collaborative design and empathetic design methods attempt to make a strong relationship between these two. In participatory design activities, projective `make tools' are required for users to show their thoughts. This research is designed to apply an empathetic way of using `make tools' in user experience design for websites clients, users, and designers.

A magnetic wireframe tool has been used as a `make tool', and a sample project has been defined in order to see how the tool can create empathy among stakeholders. In this study fourth year graphic design students at Arizona State University (ASU), USA, are participating as users, faculty members have the role of clients, and Forty, Inc., a design firm in the Phoenix area, is the design team for the study. All of these three groups are cooperating on re-designing the homepage of the Design School in Herberger Institute for Design and Art (HIDA) at ASU.

A method for applying the magnetic tool was designed and used for each group. Results of users and clients' activities were shared with the design team, and they designed a final prototype for the wireframe of the sample project. Observation and interviews were done to see how participants work with the tool. Also, follow up questionnaires were used in order to evaluate all groups' experiences with the magnetic wireframe. Lastly, as a part of questionnaires, a sentence completion method has been used in order to collect the participants' exact thoughts about the magnetic tool.

Observations and results of data analysis in this research show that the tool was a helpful `make tool' for users and clients. They could talk about their ideas and also designers could learn more about people. The entire series of activities caused an empathetic relationship among stakeholders of the sample project. This method of using `make tools' in user experience design for web sites can be useful for collaborative UX design activities and further research in user experience design with empathy.
ContributorsEslamifar, Ali (Author) / Heywood, William (Thesis advisor) / Walker, Erin (Committee member) / Takamura, John (Committee member) / Arizona State University (Publisher)
Created2014
155225-Thumbnail Image.png
Description
Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents

Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents the same level of text to all users, and it is limited in its ability to provide error feedback, as it can only determine whether a user action is right or wrong. EMBRACE could help readers learn more effectively if it personalized its instruction with texts that fit their current reading level and feedback that addresses ways to correct their mistakes. Improvements were made to the system by applying design principles of intelligent tutoring systems (ITSs). The new system added features to track the student’s reading comprehension skills, including vocabulary, syntax, and usability, based on various user actions, as well as features to adapt text complexity and provide more specific error feedback using the skills. A pilot study was conducted with 7 non-ELL students to evaluate the functionality and effectiveness of these features. The results revealed both strengths and weaknesses of the ITS. While skill updates appeared most accurate when users made particular kinds of vocabulary and syntax errors, it was not able to correctly identify other kinds of syntax errors or provide feedback when skill values became too high. Additionally, vocabulary error feedback and adapting the complexity of syntax were helpful, but syntax error feedback and adapting the complexity of vocabulary were not as helpful. Overall, children enjoy using EMBRACE, and building an intelligent tutoring system into the application presents a promising approach to make reading a both fun and effective experience.
ContributorsWong, Audrey (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2017
157884-Thumbnail Image.png
Description
Concept maps are commonly used knowledge visualization tools and have been shown to have a positive impact on learning. The main drawbacks of concept mapping are the requirement of training, and lack of feedback support. Thus, prior research has attempted to provide support and feedback in concept mapping, such as

Concept maps are commonly used knowledge visualization tools and have been shown to have a positive impact on learning. The main drawbacks of concept mapping are the requirement of training, and lack of feedback support. Thus, prior research has attempted to provide support and feedback in concept mapping, such as by developing computer-based concept mapping tools, offering starting templates and navigational supports, as well as providing automated feedback. Although these approaches have achieved promising results, there are still challenges that remain to be solved. For example, there is a need to create a concept mapping system that reduces the extraneous effort of editing a concept map while encouraging more cognitively beneficial behaviors. Also, there is little understanding of the cognitive process during concept mapping. What’s more, current feedback mechanisms in concept mapping only focus on the outcome of the map, instead of the learning process.

This thesis work strives to solve the fundamental research question: How to leverage computer technologies to intelligently support concept mapping to promote meaningful learning? To approach this research question, I first present an intelligent concept mapping system, MindDot, that supports concept mapping via innovative integration of two features, hyperlink navigation, and expert template. The system reduces the effort of creating and modifying concept maps while encouraging beneficial activities such as comparing related concepts and establishing relationships among them. I then present the comparative strategy metric that modes student learning by evaluating behavioral patterns and learning strategies. Lastly, I develop an adaptive feedback system that provides immediate diagnostic feedback in response to both the key learning behaviors during concept mapping and the correctness and completeness of the created maps.

Empirical evaluations indicated that the integrated navigational and template support in MindDot fostered effective learning behaviors and facilitating learning achievements. The comparative strategy model was shown to be highly representative of learning characteristics such as motivation, engagement, misconceptions, and predicted learning results. The feedback tutor also demonstrated positive impacts on supporting learning and assisting the development of effective learning strategies that prepare learners for future learning. This dissertation contributes to the field of supporting concept mapping with designs of technological affordances, a process-based student model, an adaptive feedback tutor, empirical evaluations of these proposed innovations, and implications for future support in concept mapping.
ContributorsWang, Shang (Author) / Walker, Erin (Thesis advisor) / VanLehn, Kurt (Committee member) / Hsiao, Sharon (Committee member) / Long, Yanjin (Committee member) / Arizona State University (Publisher)
Created2019