Matching Items (51)
Filtering by

Clear all filters

148039-Thumbnail Image.png
Description

Glioblastoma (GB) is one of the deadliest cancers and the most common form of adult primary brain tumors. SGEF (ARHGEF26) has been previously shown to be overexpressed in GB tumors, play a role in cell invasion/migration, and increase temozolomide (TMZ) resistance.[3] It was hypothesized parental LN229 cell lines with SGEF

Glioblastoma (GB) is one of the deadliest cancers and the most common form of adult primary brain tumors. SGEF (ARHGEF26) has been previously shown to be overexpressed in GB tumors, play a role in cell invasion/migration, and increase temozolomide (TMZ) resistance.[3] It was hypothesized parental LN229 cell lines with SGEF knockdown (LN229-SGEFi) will show decreased metabolism in the MTS assay and decreased colony formation in a colony formation assay compared to parental LN229 cells after challenging the two cell lines with TMZ. For WB and co-immunoprecipitation (co-IP), parental LN229 cells with endogenous SGEF and BRCA were expected to interact and stain in the BRCA1:IP WB. LN229-SGEFi cells were expected to show very little SGEF precipitated due to shRNA targeted knockdown of SGEF. In conditions with mutations in the BRCA1 binding site (LN229-SGEFi + AdBRCAm/AdDM), SGEF expression was expected to decrease compared to parental LN229 or LN229-SGEFi cells reconstituted with WT SGEF (LN229-SGEFi + AdWT). LN229 infected with AdSGEF with a mutated nuclear localization signal (LN229-SGEFi + AdNLS12m) were expected to show BRCA and SGEF interaction since whole cell lysates were used for the co-IP. MTS data showed no significant differences in metabolism between the two cell lines at all three time points (3, 5, and 7 days). Western blot analysis was successful at imaging both SGEF and BRCA1 protein bands from whole cell lysate. The CFA showed no significant difference between cell lines after being challenged with 500uM TMZ. The co-IP immunoblot showed staining for BRCA1 and SGEF for all lysate samples, including unexpected lysates such as LN229-SGEFi, LN229-SGEFi + AdBRCAm, and LN229-SGEFi + AdDM. These results suggested either an indirect protein interaction between BRCA1 and SGEF, an additional BRCA binding site not included in the consensus, or possible detection of the translocated SGEF in knockdown cells lines since shRNA cannot enter the nucleus. Further optimization of CO-IP protocol, MTS assay, and CFA will be needed to characterize the SGEF/BRCA1 interaction and its role in cell survival.

ContributorsNabaty, Natalie Lana (Author) / Douglas, Lake (Thesis director) / Loftus, Joseph C. (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148049-Thumbnail Image.png
Description

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into how evolutionary history has shaped mechanisms of cancer suppression by examining how life history traits impact cancer susceptibility across species. Here, we perform multi-level analysis to test how species-level life history strategies are associated with differences in neoplasia prevalence, and apply this to mammary neoplasia within mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a combination of factor analysis and phylogenetic regression on 13 life history traits across 90 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. The factor analysis presented ways to calculate quantifiable underlying factors that contribute to covariance of entangled life history variables. A greater risk of mammary neoplasia was found to be correlated most significantly with shorter gestation length. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability. Additionally, statistical methods developed for this project present a framework for future comparative oncology studies and have the potential for many diverse applications.

ContributorsFox, Morgan Shane (Author) / Maley, Carlo C. (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136562-Thumbnail Image.png
Description
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the mechanisms that govern NSCLC cell invasion and therapeutic resistance, and to target these phenotypes towards abating the dismal five-year survival of NSCLC. The expression of the tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A; Fn14) correlates with poor patient survival and invasiveness in many tumor types including NSCLC. We hypothesize that suppression of Fn14 will inhibit NSCLC cell motility and reduce cell viability. Here we demonstrate that atorvastatin calcium treatment reduces Fn14 expression in NSCLC cell lines. Prior to Fn14 protein suppression, atorvastatin calcium modulated the expression of the Fn14 modulators P-ERK1/2 and P-NF-κβ. Atorvastatin calcium treatment inhibited the migratory capacity in H1975, H2030 and H1993 cells by at least 55%. When chemotactic migration in H2030 cells was induced by the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK) treatment, atorvastatin calcium successfully negated any stimulatory effects. Inversely, treatment of NSCLC cells with cholesterol resulted in a statistically significant increase in migration. Depletion of Fn14 expression via siRNA suppressed the migratory effect of cholesterol. Finally, atorvastatin calcium treatment sensitized cells to radiation treatment, reducing cell survival. These data suggest that atorvastatin calcium may inhibit NSCLC invasiveness through a mechanism involving Fn14, and may be a novel therapeutic target in NSCLC tumors expressing Fn14.
ContributorsCornes, Victoria Elisabeth (Author) / Stout, Valerie (Thesis director) / Whitsett, Timothy (Committee member) / Carson, Vashti (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135873-Thumbnail Image.png
Description
Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.
ContributorsShiehzadegan, Shima (Author) / Johnston, Stephen (Thesis director) / Stafford, Phillip (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135616-Thumbnail Image.png
Description
Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic

Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic approach to identify naturally-processed HPV16-derived HLA class I epitopes for immunotherapy development. Methods: K562 cells, which lack HLA expression, were transduced with each HPV16 antigen using lentivirus and supertransfected with HLA-A2 by nucleofection. Stable cell lines expressing each antigen were selected for and maintained throughout the investigation. In order to establish a Gateway-compatible vector for robust transient gene expression, a Gateway recombination expression cloning cassette was inserted into the commercial Lonza pMAX GFP backbone, which has been experimentally shown to display high transfection expression efficiency. GFP was cloned into the vector and plain K562 cells were transfected with the plasmid by nucleofection. Results: Expression of K562-A2 was tested at various time points by flow cytometry and A2 expression was confirmed. Protein expression was shown for the transduced K562 E7 by Western blot analysis. High transfection efficiency of the pMAX_GFP_Dest vector (up to 97% GFP+ cells) was obtained 48 hours post transfection, comparable to the commercial GFP-plasmid. Conclusion: We have established a rapid system for target viral antigen co-expression with single HLA molecules for analysis of antigen presentation. Using HPV as a model system, our goal is to identify specific antigenic peptide sequences to develop immunotherapeutic treatments for HPV-associated cancers.
ContributorsVarda, Bianca Marie (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / Krishna, Sri (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135618-Thumbnail Image.png
Description
Current studies in Multiple Myeloma suggest that patient tumors and cell lines cluster separately based on gene expression profiles. Hyperdiploid patients are also extremely underrepresented in established human myeloma cell lines (HMCLs). This suggests that the average HMCL model system does not accurately represent the average myeloma patient. To investigate

Current studies in Multiple Myeloma suggest that patient tumors and cell lines cluster separately based on gene expression profiles. Hyperdiploid patients are also extremely underrepresented in established human myeloma cell lines (HMCLs). This suggests that the average HMCL model system does not accurately represent the average myeloma patient. To investigate this question we performed a combined CNA and SNV evolutionary comparison between four myeloma tumors and their established HMCLs (JMW-1, VP-6, KAS-6/1-KAS-6/2 and KP-6). We identified copy number changes shared between the tumors and their cell lines (mean of 74 events - 59%), those unique to patients (mean of 21.25 events - 17%), and those only in the cell lines (mean of 30.75 events \u2014 24%). A relapse sample from the JMW-1 patient showed 58% similarity to the primary diagnostic tumor. These data suggest that, on the level of copy number abnormalities, HMCLs show equal levels of evolutionary divergence as that observed within patients. By exome sequencing, patient tumors were 71% similar to their representative HMCLs, with ~12.5% and ~16.5% of SNVs unique to the tumors and HMCLs respectively. The HMCLs studied appear highly representative of the patient from which they were derived, with most differences associated with an enrichment of sub-populations present in the primary tumor. Additionally, our analysis of the KP-6 aCGH data showed that the patient's hyperdiploid karyotype was maintained in its respective HMCL. This discovery confirms the establishment and validation of a novel and potentially clinically relevant hyperdiploid HMCL that could provide a major advance in our ability to understand the pathogenesis and progression of this prominent patient population.
ContributorsBenard, Brooks Avery (Author) / Keats, Jonathan (Thesis director) / Anderson, Karen (Committee member) / Jelinek, Diane (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137667-Thumbnail Image.png
Description
The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member

The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion and survival via binding to the fibroblast growth factor-inducible 14 (Fn14) receptor and subsequent activation of the Rac1/NF-kappaB pathway. In addition, we have reported previously that Fn14 is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Here we demonstrate that TWEAK can act as a chemotactic factor for glioma cells, a potential process to drive cell invasion into the surrounding brain tissue. Specifically, we detected a chemotactic migration of glioma cells to the concentration gradient of TWEAK. Since Src family kinases (SFK) have been implicated in chemotaxis, we next determined whether TWEAK:Fn14 engagement activated these cytoplasmic tyrosine kinases. Our data shows that TWEAK stimulation of glioma cells results in a rapid phosphorylation of the SFK member Lyn as determined by multiplex Luminex assay and verified by immunoprecipitation. Immunodepletion of Lyn by siRNA oligonucleotides suppressed the chemoattractive effect of TWEAK on glioma cells. We hypothesize that TWEAK secretion by cells present in the glioma microenvironment induce invasion of glioma cells into the brain parenchyma. Understanding the function and signaling of the TWEAK-Fn14 ligand-receptor system may lead to development of novel therapies to therapeutically target invasive glioma cells.
ContributorsJameson, Nathan Meade (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Tran, Nhan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137656-Thumbnail Image.png
Description
Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella

Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella as anti-cancer agents is their toxicity at the dose required for therapeutic efficacy, but reducing the dose results in diminished efficacy. In this project, we explored novel means to reduce the toxicity of the recombinant attenuated Salmonella by genetically engineering those virulence factors to facilitate maximal colonization of tumor tissues and reduced fitness in normal tissues. We have constructed two sets of Salmonella strains. In the first set, each targeted gene was knocked out by deletion of the gene. In the second set, the predicted promoter region of each gene was replaced with a rhamnose-regulated promoter, which will cease the synthesis of these genes in vivo, a rhamnose-free environment.
ContributorsBenson, Lee Samuel (Author) / Kong, Wei (Thesis director) / Martin, Thomas (Committee member) / Lake, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Center for Infectious Diseases and Vaccinology (Contributor) / School of Life Sciences (Contributor)
Created2013-05