Matching Items (6)
151896-Thumbnail Image.png
Description
Purpose: Exercise interventions often result in less than predicted weight loss or even weight gain in some individuals, with over half of the weight that is lost often being regained within one year. The current study hypothesized that one year following a 12-week supervised exercise intervention, women who continued to

Purpose: Exercise interventions often result in less than predicted weight loss or even weight gain in some individuals, with over half of the weight that is lost often being regained within one year. The current study hypothesized that one year following a 12-week supervised exercise intervention, women who continued to exercise regularly but initially gained weight would lose the weight gained, reverting back to baseline with no restoration of set-point, or continue to lose weight if weight was initially lost. Conversely, those who discontinued purposeful exercise at the conclusion of the study were expected to continue to gain or regain weight. Methods: 24 women who completed the initial 12-week exercise intervention (90min/week of supervised treadmill walking at 70%VO2peak) participated in a follow-up study one year after the conclusion of the exercise intervention. Subjects underwent Dual-energy X-Ray Absorptiometry at baseline, 12-weeks, and 15 months, and filled out physical activity questionnaires at 15 months. Results: A considerable amount of heterogeneity was observed in body weight and fat mass changes among subjects, but there was no significant overall change in weight or fat mass from baseline to follow-up. 15 women were categorized as compensators and as a group gained weight (+ 0.94±3.26kg) and fat mass (+0.22±3.25kg) compared to the 9 non-compensators who lost body weight (-0.26±3.59kg) and had essentially no change in fat mass (+0.01±2.61kg) from 12-weeks to follow-up. There was a significant between group difference (p=.003) in change in fat mass from 12-weeks to follow-up between subjects who continued to regularly vigorously exercise (-2.205±3.070kg), and those who did not (+1.320±2.156kg). Additionally, energy compensation from baseline to 12-weeks and early body weight and composition changes during the intervention were moderate predictors of body weight and composition changes from baseline to follow-up. Conclusion: The main finding of this study is that following a 12-week supervised exercise intervention, women displayed a net loss of fat mass during the follow-up period if regular vigorous exercise was continued, regardless of whether they were classified as compensators or non-compensators during the initial intervention.
ContributorsCabbage, Clarissa Marie (Author) / Gaesser, Glenn (Thesis advisor) / Chisum, Jack (Committee member) / Campbell, Kathryn (Committee member) / Arizona State University (Publisher)
Created2013
133689-Thumbnail Image.png
Description
With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United

With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United States are either overweight or obese. Being obese increase the risk of many other disease such as diabetes, cardiovascular disease and insulin resistance. Besides being a great health concern, obesity is also cause a great financial burden. Many efforts have been made to understand the defense against obesity and weight loss. The goal of this study was to understand the characterization of food intake and weight gain responses when imposed on a high-fat diet (HFD) using rats. It was predicted that weight gain would be dependent on energy intake and it would have a significant effect on adiposity compared to energy intake. Data showed that energy intake had high significance with adiposity whereas weight gain showed no significance. Also for the rats that were on HFD, the obesity-prone (OP) rats exhibited a great amount of weight gain and energy intake while the obesity-resistance (OR) rats showed a similar weight gain to the controlled group on low-fat diet (LFD) despite being hyperphagic. This suggests that OR is characterized by equal weight gain despite hyperphagia but this alone cannot explain the boy defense against obesity. More research is needed with a larger sample size to understand weight gain responses in order to fight against the epidemic of obesity.
ContributorsMao, Samuel (Author) / Herman, Richard (Thesis director) / Baluch, Page (Committee member) / Lamb, Timothy (Committee member) / WPC Graduate Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134903-Thumbnail Image.png
Description
Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This

Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This activation should, theoretically, help to control weight gain. A protocol was developed to study four male Sprague-Dawley rats throughout a fourteen week period through the measurement of brown adipose tissue blood flow and brown adipose tissue, back, and abdomen temperatures to determine if diet induced thermogenesis existed and could be activated through norepinephrine. The sedative used to obtain blood flow measurements, ketamine, was discovered to induce a thermal response prior to the norepinephrine injection by mimicking the norepinephrine response in the sympathetic nervous system. This discovery altered the original protocol to exclude an injection of norepinephrine, as this injection would have no further thermal effect. It was found that ketamine sedation excited diet induced thermogenesis in periods of youth, low fat diet, and early high fat diet. The thermogenic capacity was found to be at a peak of 2.1 degrees Celsius during this time period. The data also suggested that the activation of diet induced thermogenesis decreased as the period of high fat diet increased, and by week 4 of the high fat diet, almost all evidence of diet induced thermogenesis was suppressed. This indicated that diet induced thermogenesis is time and diet dependent. Further investigation will need to be made to determine if prolonged high fat diet or age suppress diet induced thermogenesis.
ContributorsJayo, Heather Lynn (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154341-Thumbnail Image.png
Description
College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and

College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and body mass index (BMI) is limited among this population. Therefore, the purpose of this study was to assess associations between the gut microbiome, BMI, and dietary intake in a population of healthy college students living in two dorms at Arizona State University (n=90). Cross-sectional analyses were undertaken including 24-hour dietary recalls and anthropometrics (height, weight and BMI). High throughput Bacterial 16S rRNA gene sequencing of fecal samples was performed to quantify the gut microbiome and analyses were performed at phyla and family levels. Within this population, the mean BMI was 24.4 ± 5.3 kg/m2 and mean caloric intake was 1684 ± 947 kcals/day. Bacterial community analysis revealed that there were four predominant phyla and 12 predominant families accounting for 99.3% and 97.1% of overall microbial communities, respectively. Results of this study suggested that a significant association occurred between one principal component (impacted most by 22 microbial genera primarily within Firmicutes) and BMI (R2=0.053, p=0.0301). No significant correlations or group differences were observed when assessing the Firmicutes/Bacteroidetes ratio in relation to BMI or habitual dietary intake. These results provide a basis for gut microbiome research in college populations. Although, findings suggest that groups of microbial genera may be most influential in obesity, further longitudinal research is necessary to more accurately describe these associations over me. Findings from future research may be used to develop interventions to shift the gut microbiome to help moderate or prevent excess weight gain during this important life stage.
ContributorsHotz, Ricci-Lee (Author) / Whisner, Corrie (Thesis advisor) / Bruening, Meredith (Committee member) / Vega-Lopez, Sonia (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2016
161205-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high-fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsSayegh, Jonathan (Author) / Garavito, Jorge (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2021-12
161071-Thumbnail Image.png
Description

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness,

Obesity has reached epidemic proportions all around the world, and it has doubled in prevalence in both adults and children in over 70 countries from 1980 to 2015 (Afshin et al., 2017). Excessive weight gain in this proportion has been shown to negatively affect human cognition, reward neurocircuitry, stress responsiveness, and quality of life (Morris et al., 2015). Obesity is an example of a complex interaction between the environment (i.e., high fat diets) and heredity (i.e., polygenic patterns of inheritance). The overconsumption of a high-fat diet (HFD) is an environmental factor that commonly induces weight gain (Hariri & Thibault, 2010). Two dietary-induced phenotypes have been observed in rats as a bimodal distribution of weight gain: obesity-prone (OP) and obesity-resistant (OR). Levin et al. (1997) investigated male and female HFD-fed Sprague-Dawley rats designated as OR when their weight gains were less than the heaviest chow-fed controls, and OP when their weight gains were greater than the heaviest chow-fed controls. OP rats showed greater weight gain, similar energy intake (EI), and similar feed efficiency (FE) compared to OR rats. Pagliassotti et al. (1997) designated male HFD-fed Wistar rats as OP and OR based on upper and lower tertiles of weight gain. OP rats displayed greater weight gain and EI than OR rats. These investigations highlight a predicament regarding rodent research in obesity: independent variables such as rat age, gender, strain, distribution of dietary macronutrients, and fatty acid composition of HFD and chow vary considerably, making it challenging to generalize data. Our experiment utilized outbred male Sprague-Dawley rats (5-6 weeks) administered a chow diet (19% energy from fat; 3.1 kcal/g) and a lard-based HFD (60% energy from fat; 5.24 kcal/g) over eight weeks. Separate rat populations were examined over three consecutive years (2017-2020), and independent obesogenic environmental variables were controlled. We investigated the persistence of weight gain, EI, and FE in HFD-fed rats inclusive of a population of designated OP and OR rats based on tertiles of weight gain. We define persistence as being p > 0.05. We hypothesize that the profiles (periodic data) of the dependent variables (weight gain, EI, FE) will be similar and persistent throughout the three separate years, but the magnitudes (cumulative data) of the dependent variables will differ. Our findings demonstrate that HFD, OP, and OR groups were persistent for periodic and cumulative weight gain, along with FE across the three consecutive independent years. Our findings also demonstrate impersistence for periodic EI in all groups, along with impersistence in cumulative EI for CHOW, OP, and OR groups. Therefore, our results allude to an inconsistent relationship between EI and weight gain, indicating that EI does not completely explain weight gain. Thus, the weakness between EI and weight gain relationship may be attributed to a polygenic pattern of inheritance, possibly signaling a weight setpoint regardless of EI.

ContributorsGaravito, Jorge (Author) / Sayegh, Jonathan (Co-author) / Herman, Richard (Thesis director) / Buetow, Kenneth (Committee member) / Khatib, Rawaan (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2021-12