Matching Items (389)
Filtering by

Clear all filters

150034-Thumbnail Image.png
Description
Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely

Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely respond in times of a disaster. It also seems likely that the earlier concepts and skills are learned, the easier those concepts and skills would be to remember and the more proficient one would become in implementing them. Therefore, it seems appropriate to teach emergency preparedness concepts and skills early on in the educational process. This means that significant efforts need to be directed toward learning, what impediments currently exist, what is helpful, and how preparedness concepts and skills can be taught to our children. A survey was distributed to third, fourth, and fifth grade teachers, asking them questions about emergency preparedness lessons in the classroom. Results indicated that the majority of teachers would be willing to teach emergency preparedness if the curriculum met current academic standards and they were given adequate resources to teach this subject. This study provides ideas, concepts and motivation for teachers to use in a cross-curricular approach to teaching emergency preparedness in the classroom. This is accomplished by presenting examples of newly developed curriculum/lesson plans that meet state academic standards, based on the current Community Emergency Response Team program and on children's fiction literature for the appropriate age group. A list of literature that could be used in this development is also provided in this study.
ContributorsChristensen, Christian B (Author) / Edwards, David (Thesis advisor) / Olson, Larry (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2011
150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
149785-Thumbnail Image.png
Description
Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This

Microchannel heat sinks can possess heat transfer characteristics unavailable in conventional heat exchangers; such sinks offer compact solutions to otherwise intractable thermal management problems, notably in small-scale electronics cooling. Flow boiling in microchannels allows a very high heat transfer rate, but is bounded by the critical heat flux (CHF). This thesis presents a theoretical-numerical study of a method to improve the heat rejection capability of a microchannel heat sink via expansion of the channel cross-section along the flow direction. The thermodynamic quality of the refrigerant increases during flow boiling, decreasing the density of the bulk coolant as it flows. This may effect pressure fluctuations in the channels, leading to nonuniform heat transfer and local dryout in regions exceeding CHF. This undesirable phenomenon is counteracted by permitting the cross-section of the microchannel to increase along the direction of flow, allowing more volume for the vapor. Governing equations are derived from a control-volume analysis of a single heated rectangular microchannel; the cross-section is allowed to expand in width and height. The resulting differential equations are solved numerically for a variety of channel expansion profiles and numbers of channels. The refrigerant is R-134a and channel parameters are based on a physical test bed in a related experiment. Significant improvement in CHF is possible with moderate area expansion. Minimal additional manufacturing costs could yield major gains in the utility of microchannel heat sinks. An optimum expansion rate occurred in certain cases, and alterations in the channel width are, in general, more effective at improving CHF than alterations in the channel height. Modest expansion in height enables small width expansions to be very effective.
ContributorsMiner, Mark (Author) / Phelan, Patrick E (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011
150370-Thumbnail Image.png
Description
Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not

Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not just design skills. Traditionally designers learned through apprenticing a master. Most design education has moved away from this traditional model and has begun incorporating a well-rounded program of study, yet there are still more improvements to be made. This research proposes a new Integrated Transformational Experience Model, ITEM, for design education which will be rooted in sustainability, cultural integration, social embeddedness, and discipline collaboration. The designer will be introduced to new ideas and experiences from the immersion of current social issues where they will gain experience creating solutions to global problems enabling them to become catalysts of change. This research is based on interviews with industrial design students to gain insights, benefits and drawbacks of the current model of design education. This research will expand on the current model for design education, combining new ideas that will shed light on the future of design disciplines through the education and motivation of designers. The desired outcome of this study is to incorporate hands on learning through social issues in design classrooms, identify ways to educate future problem solvers, and inspire more research on this issue.
ContributorsWingate, Andrea (Author) / Takamura, John (Thesis advisor) / Stamm, Jill (Committee member) / Bender, Diane (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150385-Thumbnail Image.png
Description
In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared

In nearly all commercially successful internal combustion engine applications, the slider crank mechanism is used to convert the reciprocating motion of the piston into rotary motion. The hypocycloid mechanism, wherein the crankshaft is replaced with a novel gearing arrangement, is a viable alternative to the slider crank mechanism. The geared hypocycloid mechanism allows for linear motion of the connecting rod and provides a method for perfect balance with any number of cylinders including single cylinder applications. A variety of hypocycloid engine designs and research efforts have been undertaken and produced successful running prototypes. Wiseman Technologies, Inc provided one of these prototypes to this research effort. This two-cycle 30cc half crank hypocycloid engine has shown promise in several performance categories including balance and efficiency. To further investigate its potential a more thorough and scientific analysis was necessary and completed in this research effort. The major objective of the research effort was to critically evaluate and optimize the Wiseman prototype for maximum performance in balance, efficiency, and power output. A nearly identical slider crank engine was used extensively to establish baseline performance data and make comparisons. Specialized equipment and methods were designed and built to collect experimental data on both engines. Simulation and mathematical models validated by experimental data collection were used to better quantify performance improvements. Modifications to the Wiseman prototype engine improved balance by 20 to 50% (depending on direction) and increased peak power output by 24%.
ContributorsConner, Thomas (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2011
150388-Thumbnail Image.png
Description
The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used

The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used to overcome them. One of the major contributions of this research is the method by which easy traversal between different ideation methods with different components were facilitated, to support both creativity and functional quality. Another important part of the framework is the sensing of ideation states (blocks/ unfettered ideation) and investigation of matching ideation strategies most likely to facilitate progress. Some of the ideation methods embedded in the initial holistic test bed are Physical effects catalog, working principles catalog, TRIZ, Bio-TRIZ and Artifacts catalog. Repositories were created for each of those. This framework will also be used as a research tool to collect large amount of data from designers about their choice of ideation strategies used, and their effectiveness. Effective documentation of design ideation paths is also facilitated using this holistic approach. A computer tool facilitating holistic ideation was developed. Case studies were run on different designers to document their ideation states and their choice of ideation strategies to come up with a good solution to solve the same design problem.
ContributorsMohan, Manikandan (Author) / Shah, Jami J. (Thesis advisor) / Huebner, Kenneth (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150391-Thumbnail Image.png
Description
Michael Apple's scholarship on curriculum, educational ideology, and official knowledge continues to be influential to the study of schooling. Drawing on the sociological insights of Pierre Bourdieu and the cultural studies approaches of Raymond Williams, Apple articulates a theory of schooling that pays particular attention to how official knowledge is

Michael Apple's scholarship on curriculum, educational ideology, and official knowledge continues to be influential to the study of schooling. Drawing on the sociological insights of Pierre Bourdieu and the cultural studies approaches of Raymond Williams, Apple articulates a theory of schooling that pays particular attention to how official knowledge is incorporated into the processes of schooling, including textbooks. In an effort to contribute to Apple's scholarship on textbooks, this study analyzed high school American history textbooks from the 1960s through the 2000s with specific attention to the urban riots of the late-1960s, sixties counterculture, and the women's movement utilizing Julia Kristeva's psychoanalytic concept of abjection to augment Apple's theory of knowledge incorporation. This combination reveals not only how select knowledge is incorporated as official knowledge, but also how knowledge is treated as abject, as unfit for the curricular body of official knowledge and the selective tradition of American history. To bridge the theoretical frameworks of incorporation and abjection Raymond Williams' theory of structures of feeling and Slavoj iek's theory of ideological quilting are employed to show how feelings and emotional investments maintain ideologies. The theoretical framework developed and the interpretive analyses undertaken demonstrate how textbook depictions of these historical events structure students' present educational experiences with race, class, and gender.
ContributorsKearl, Benjamin (Author) / Margolis, Eric (Thesis advisor) / Blumenfeld-Jones, Donald (Committee member) / Sandlin, Jennifer (Committee member) / Arizona State University (Publisher)
Created2011
150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
ContributorsJoy, Lijin (Author) / Trimble, Steve (Thesis advisor) / Davidson, Joseph (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011