Matching Items (96)
Filtering by

Clear all filters

150034-Thumbnail Image.png
Description
Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely

Being properly prepared is one of the keys to surviving an emergency or a disaster. In order to be prepared, people need appropriate education in preparedness, which includes elements of prevention, and planning. There is a definite need to better prepare our nation's citizens in order for them to safely respond in times of a disaster. It also seems likely that the earlier concepts and skills are learned, the easier those concepts and skills would be to remember and the more proficient one would become in implementing them. Therefore, it seems appropriate to teach emergency preparedness concepts and skills early on in the educational process. This means that significant efforts need to be directed toward learning, what impediments currently exist, what is helpful, and how preparedness concepts and skills can be taught to our children. A survey was distributed to third, fourth, and fifth grade teachers, asking them questions about emergency preparedness lessons in the classroom. Results indicated that the majority of teachers would be willing to teach emergency preparedness if the curriculum met current academic standards and they were given adequate resources to teach this subject. This study provides ideas, concepts and motivation for teachers to use in a cross-curricular approach to teaching emergency preparedness in the classroom. This is accomplished by presenting examples of newly developed curriculum/lesson plans that meet state academic standards, based on the current Community Emergency Response Team program and on children's fiction literature for the appropriate age group. A list of literature that could be used in this development is also provided in this study.
ContributorsChristensen, Christian B (Author) / Edwards, David (Thesis advisor) / Olson, Larry (Committee member) / Peterson, Danny (Committee member) / Arizona State University (Publisher)
Created2011
150370-Thumbnail Image.png
Description
Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not

Individuals' experiences, environment, and education greatly impact their entire being. Similarly, a designer is affected by these elements, which impacts how, what and why they design. In order for design education to generate designers who are more socially aware problem solvers, that education must introduce complex social matters and not just design skills. Traditionally designers learned through apprenticing a master. Most design education has moved away from this traditional model and has begun incorporating a well-rounded program of study, yet there are still more improvements to be made. This research proposes a new Integrated Transformational Experience Model, ITEM, for design education which will be rooted in sustainability, cultural integration, social embeddedness, and discipline collaboration. The designer will be introduced to new ideas and experiences from the immersion of current social issues where they will gain experience creating solutions to global problems enabling them to become catalysts of change. This research is based on interviews with industrial design students to gain insights, benefits and drawbacks of the current model of design education. This research will expand on the current model for design education, combining new ideas that will shed light on the future of design disciplines through the education and motivation of designers. The desired outcome of this study is to incorporate hands on learning through social issues in design classrooms, identify ways to educate future problem solvers, and inspire more research on this issue.
ContributorsWingate, Andrea (Author) / Takamura, John (Thesis advisor) / Stamm, Jill (Committee member) / Bender, Diane (Committee member) / Arizona State University (Publisher)
Created2011
150391-Thumbnail Image.png
Description
Michael Apple's scholarship on curriculum, educational ideology, and official knowledge continues to be influential to the study of schooling. Drawing on the sociological insights of Pierre Bourdieu and the cultural studies approaches of Raymond Williams, Apple articulates a theory of schooling that pays particular attention to how official knowledge is

Michael Apple's scholarship on curriculum, educational ideology, and official knowledge continues to be influential to the study of schooling. Drawing on the sociological insights of Pierre Bourdieu and the cultural studies approaches of Raymond Williams, Apple articulates a theory of schooling that pays particular attention to how official knowledge is incorporated into the processes of schooling, including textbooks. In an effort to contribute to Apple's scholarship on textbooks, this study analyzed high school American history textbooks from the 1960s through the 2000s with specific attention to the urban riots of the late-1960s, sixties counterculture, and the women's movement utilizing Julia Kristeva's psychoanalytic concept of abjection to augment Apple's theory of knowledge incorporation. This combination reveals not only how select knowledge is incorporated as official knowledge, but also how knowledge is treated as abject, as unfit for the curricular body of official knowledge and the selective tradition of American history. To bridge the theoretical frameworks of incorporation and abjection Raymond Williams' theory of structures of feeling and Slavoj iek's theory of ideological quilting are employed to show how feelings and emotional investments maintain ideologies. The theoretical framework developed and the interpretive analyses undertaken demonstrate how textbook depictions of these historical events structure students' present educational experiences with race, class, and gender.
ContributorsKearl, Benjamin (Author) / Margolis, Eric (Thesis advisor) / Blumenfeld-Jones, Donald (Committee member) / Sandlin, Jennifer (Committee member) / Arizona State University (Publisher)
Created2011
149905-Thumbnail Image.png
Description
Many school facility-planning theories have proposed an integrated role for schools within their surrounding neighborhood, advocating analogous approaches to creating "community schools" that involve social and community services at school sites that support both students and local residents. Despite the popularity of this concept in the education community, the idea

Many school facility-planning theories have proposed an integrated role for schools within their surrounding neighborhood, advocating analogous approaches to creating "community schools" that involve social and community services at school sites that support both students and local residents. Despite the popularity of this concept in the education community, the idea of schools as community centers has not entered the mainstream of urban planning thought or practice. As the community schools movement continues to grow, planners should be engaged to support and leverage community school developments using their unique role as mediators of public and private interests. Furthermore, planners tend to have a broad perspective of communities that can facilitate synergistic partnerships and development patterns beyond the immediate school site. The aim of this research was to reframe the existing literature on community schools into a unified School-Oriented Development (SOD) neighborhood planning paradigm that 1) proposes a typology based on the relationships between schools and their surrounding communities, and 2) suggests urban form guidelines that will support these relationships in a child-friendly environment. These outcomes were achieved through the creation of a prototype SOD SmartCode Module that incorporates an SOD typology.
ContributorsReid, Carolyn (Author) / Talen, Emily (Thesis advisor) / Dornfeld, Leslie (Committee member) / Stein, Jay (Committee member) / Arizona State University (Publisher)
Created2011
149830-Thumbnail Image.png
Description
The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary

The purpose of this study was to examine the impact of individualized afterschool tutoring, under federal Supplemental Educational Services (SES), on mathematical and general academic intrinsic motivation and mathematical achievement of at-risk students. The population of this study consisted of two third graders and five fourth graders from an elementary school in the Reynolds School District in Portland, Oregon. One participant was male. The other six were female. Six of the students were Hispanic, and one student was multiethnic. Students' parents enrolled their children in free afterschool tutoring with Mobile Minds Tutoring, an SES provider in the state of Oregon. The participants were given pre- and post-assessments to measure their intrinsic motivation and achievement. The third graders took the Young Children's Academic Intrinsic Motivation Inventory (Y-CAIMI) and the fourth graders took the Children's Academic Intrinsic Motivation Inventory (CAIMI). All students took the Group Mathematics Assessment and Diagnostic Evaluation (GMADE) according to their grade level. The findings from this study are consistent with the literature review, in that individualized tutoring can help increase student motivation and achievement. Six out of the seven students who participated in this study showed an increase in mathematical achievement, and four out of the seven showed an increase in intrinsic motivation.
ContributorsBallou, Cherise (Author) / Middleton, James (Thesis advisor) / Kinach, Barbara (Committee member) / Bitter, Gary (Committee member) / Arizona State University (Publisher)
Created2011
150170-Thumbnail Image.png
Description
The need for a critical education in a democracy, its difficulties, and how to reform this field requires urgent attention. This project begins with the premise that education is necessary for a vibrant democracy. While examining differing voices that advocate for educational reform, mainly that of Critical Pedagogy, it is

The need for a critical education in a democracy, its difficulties, and how to reform this field requires urgent attention. This project begins with the premise that education is necessary for a vibrant democracy. While examining differing voices that advocate for educational reform, mainly that of Critical Pedagogy, it is shown how conflicting forms are advocating similar ideals. Henry Giroux and David Horowitz, both reformers that are on opposite sides of the political spectrum appear to have similar goals. Yet, the question becomes how to solve these differences between these parties? By examining the philosophical origins of these projects and explicating differences rooted in human nature and the good, the basic differences can begin to be shown. In showing these differences it requires going back to the work of Kant. Kant shows the necessity of beginning with philosophy and examining basic assumptions in order to begin to critique and build an education that would guarantee equality.
ContributorsNolen, Matthew (Author) / Wise, Greg (Thesis advisor) / Anderson, Owen (Committee member) / Ramsey, Ramsey (Committee member) / Arizona State University (Publisher)
Created2011
150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150188-Thumbnail Image.png
Description
Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it

Meter-resolution topography gathered by LiDAR (Light Detection and Ranging) has become an indispensable tool for better understanding of many surface processes including those sculpting landscapes that record information about earthquake hazards for example. For this reason, and because of the spectacular representation of the phenomena that these data provide, it is appropriate to integrate these data into Earth science educational materials. I seek to answer the following research question: "will using the LiDAR topography data instead of, or alongside, traditional visualizations and teaching methods enhance a student's ability to understand geologic concepts such as plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology?" In order to answer this question, a ten-minute introductory video on LiDAR and its uses for the study of earthquakes entitled "LiDAR: Illuminating Earthquake Hazards" was produced. Additionally, LiDAR topography was integrated into the development of an undergraduate-level educational activity, the San Andreas fault (SAF) earthquake cycle activity, designed to teach introductory Earth science students about the earthquake cycle. Both the LiDAR video and the SAF activity were tested in undergraduate classrooms in order to determine their effectiveness. A pretest and posttest were administered to introductory geology lab students. The results of these tests show a notable increase in understanding LiDAR topography and its uses for studying earthquakes from pretest to posttest after watching the video on LiDAR, and a notable increase in understanding the earthquake cycle from pretest to posttest using the San Andreas Fault earthquake cycle exercise. These results suggest that the use of LiDAR topography within these educational tools is beneficial for students when learning about the earthquake cycle and earthquake hazards.
ContributorsRobinson, Sarah Elizabeth (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150276-Thumbnail Image.png
Description
This paper outlines the three research projects that I performed between 2009-present: Slow Movement Training (SMT) lab, Self-education Through Embodied Movement (STEM), and the Athletic Movement Program (AMP). It first evaluates the major issues that spawned each research project, and then provides a framework for understanding the shift in the

This paper outlines the three research projects that I performed between 2009-present: Slow Movement Training (SMT) lab, Self-education Through Embodied Movement (STEM), and the Athletic Movement Program (AMP). It first evaluates the major issues that spawned each research project, and then provides a framework for understanding the shift in the student-centered physical and mental movement practices that I developed in response to the need for reform. The content will address the personal and professional paradigmatic shift that I experienced through the lens of a practitioner and educator. It will focus heavily on the transitions between each of the projects and finally the emergence of the Athletic Movement Program. The focal point becomes one of community needs, alternate resources and hybrid-online classroom support. The paper concludes with an overview and content comparison between the one-size-fits-all model used within public movement education and Athletic Movement Programs' strengths and challenges.
ContributorsCroitoru, Michael (Author) / Mitchell, John D. (Thesis advisor) / Fitzgerald, Mary (Committee member) / Coleman, Grisha (Committee member) / Arizona State University (Publisher)
Created2011
152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013