Matching Items (5)
Filtering by

Clear all filters

147738-Thumbnail Image.png
Description

Covid-19 is unlike any coronavirus we have seen before, characterized mostly by the ease with which it spreads. This analysis utilizes an SEIR model built to accommodate various populations to understand how different testing and infection rates may affect hospitalization and death. This analysis finds that infection rates have a

Covid-19 is unlike any coronavirus we have seen before, characterized mostly by the ease with which it spreads. This analysis utilizes an SEIR model built to accommodate various populations to understand how different testing and infection rates may affect hospitalization and death. This analysis finds that infection rates have a significant impact on Covid-19 impact regardless of the population whereas the impact that testing rates have in this simulation is not as pronounced. Thus, policy-makers should focus on decreasing infection rates through targeted lockdowns and vaccine rollout to contain the virus, and decrease its spread.

Created2021-05
149478-Thumbnail Image.png
Description
Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model

Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model is used to evaluate how scheduling heuristics perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a single day compared to current practice. Next, a bi-criteria Genetic Algorithm is used to determine if better solutions can be obtained for this single day scheduling problem. The efficacy of the bi-criteria Genetic Algorithm, when surgeries are allowed to be moved to other days, is investigated. Numerical experiments based on real data from a large health care provider are presented. The analysis provides insight into the best scheduling heuristics, and the tradeoff between patient and health care provider based criteria. Second, a multi-stage stochastic mixed integer programming formulation for the allocation of surgeries to ORs over a finite planning horizon is studied. The demand for surgery and surgical duration are random variables. The objective is to minimize two competing criteria: expected surgery cancellations and OR overtime. A decomposition method, Progressive Hedging, is implemented to find near optimal surgery plans. Finally, properties of the model are discussed and methods are proposed to improve the performance of the algorithm based on the special structure of the model. It is found simple rules can improve schedules used in practice. Sequencing surgeries from the longest to shortest mean duration causes high expected overtime, and should be avoided, while sequencing from the shortest to longest mean duration performed quite well in our experiments. Expending greater computational effort with more sophisticated optimization methods does not lead to substantial improvements. However, controlling daily procedure mix may achieve substantial improvements in performance. A novel stochastic programming model for a dynamic surgery planning problem is proposed in the dissertation. The efficacy of the progressive hedging algorithm is investigated. It is found there is a significant correlation between the performance of the algorithm and type and number of scenario bundles in a problem instance. The computational time spent to solve scenario subproblems is among the most significant factors that impact the performance of the algorithm. The quality of the solutions can be improved by detecting and preventing cyclical behaviors.
ContributorsGul, Serhat (Author) / Fowler, John W. (Thesis advisor) / Denton, Brian T. (Thesis advisor) / Wu, Teresa (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2010
132380-Thumbnail Image.png
Description
Research indicates that over 7.7% of adults who seek medical care every year at a hospital report a delay in receiving care, having difficulty receiving care, or being unable to receive care due to long waiting times (Kennedy et al. 2004). This continue to stir the need for researchers to

Research indicates that over 7.7% of adults who seek medical care every year at a hospital report a delay in receiving care, having difficulty receiving care, or being unable to receive care due to long waiting times (Kennedy et al. 2004). This continue to stir the need for researchers to explore ways to extend healthcare services in minimal waiting times. This thesis research utilizes Arena, a discrete event simulation software, to analyze waiting times in a typical hospital setting. It goes on to explore the impact of cross training of hospital personnel in meeting the critical needs of patients while minimizing waiting times. Simulation output data were analyzed, and cross training was found to have significant impact on reducing waiting time when: intake of patients is higher than current (original) arrival rate, intake of appointment patients is highest, or intake of emergency patience is highest of the three patient categories.
ContributorsBusisi, Jeanbat (Author) / Theodore, Pavlic (Thesis director) / Feng, Ju (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132730-Thumbnail Image.png
Description
Woodland/Alloy Casting, Inc. is an aluminum foundry known for providing high-quality molds to their customers in industries such as aviation, electrical, defense, and nuclear power. However, as the company has grown larger during the past three years, they have begun to struggle with the on-time delivery of their orders. Woodland

Woodland/Alloy Casting, Inc. is an aluminum foundry known for providing high-quality molds to their customers in industries such as aviation, electrical, defense, and nuclear power. However, as the company has grown larger during the past three years, they have begun to struggle with the on-time delivery of their orders. Woodland prides itself on their high-grade process that includes core processing, the molding process, cleaning process, and heat-treat process. To create each mold, it has to flow through each part of the system flawlessly. Throughout this process, significant bottlenecks occur that limit the number of molds leaving the system. To combat this issue, this project uses a simulation of the foundry to test how best to schedule their work to optimize the use of their resources. Simulation can be an effective tool when testing for improvements in systems where making changes to the physical system is too expensive. ARENA is a simulation tool that allows for manipulation of resources and process while also allowing both random and selected schedules to be run through the foundry’s production process. By using an ARENA simulation to test different scheduling techniques, the risk of missing production runs is minimized during the experimental period so that many different options can be tested to see how they will affect the production line. In this project, several feasible scheduling techniques are compared in simulation to determine which schedules allow for the highest number of molds to be completed.
ContributorsAdams, Danielle Renee (Author) / Pavlic, Theodore (Thesis director) / Montgomery, Douglas (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
153053-Thumbnail Image.png
Description
No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor interactions with each other. These designs allow for potential estimation

No-confounding designs (NC) in 16 runs for 6, 7, and 8 factors are non-regular fractional factorial designs that have been suggested as attractive alternatives to the regular minimum aberration resolution IV designs because they do not completely confound any two-factor interactions with each other. These designs allow for potential estimation of main effects and a few two-factor interactions without the need for follow-up experimentation. Analysis methods for non-regular designs is an area of ongoing research, because standard variable selection techniques such as stepwise regression may not always be the best approach. The current work investigates the use of the Dantzig selector for analyzing no-confounding designs. Through a series of examples it shows that this technique is very effective for identifying the set of active factors in no-confounding designs when there are three of four active main effects and up to two active two-factor interactions.

To evaluate the performance of Dantzig selector, a simulation study was conducted and the results based on the percentage of type II errors are analyzed. Also, another alternative for 6 factor NC design, called the Alternate No-confounding design in six factors is introduced in this study. The performance of this Alternate NC design in 6 factors is then evaluated by using Dantzig selector as an analysis method. Lastly, a section is dedicated to comparing the performance of NC-6 and Alternate NC-6 designs.
ContributorsKrishnamoorthy, Archana (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Thesis advisor) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2014