Matching Items (868)
Filtering by

Clear all filters

150053-Thumbnail Image.png
Description
While the literature on caregivers of loved ones with Alzheimer's Disease and Related Disorders (ADRD) has continued to grow, the relationship of ethnicity and acculturation factors with regards to the coping strategies used by caregivers has not been extensively explored. The current study included participants from the Palo Alto site

While the literature on caregivers of loved ones with Alzheimer's Disease and Related Disorders (ADRD) has continued to grow, the relationship of ethnicity and acculturation factors with regards to the coping strategies used by caregivers has not been extensively explored. The current study included participants from the Palo Alto site of the Resources for Enhancing Alzheimer's Caregiver Health (REACH) project. The study examined differences in coping strategies between 140 non-Hispanic White, 45 less acculturated Latina, and 61 more acculturated Latina caregivers. Univariate and Multivariate Analysis of Variance, as well as post hoc analyses, were conducted to determine the differences among the three groups. Results indicated less acculturated Latina caregivers employ more avoidant coping strategies compared to non-Hispanic White caregivers. However, no differences were found among the other groups in their use of avoidance coping. Moreover, there were no differences found in the use of social support seeking, count your blessings, problem focused, and blaming others coping among the three groups. These findings have important implications for the design of culturally relevant psychoeducational and therapeutic interventions aimed towards meeting the individual needs of these three populations. In addition, the findings expand on the understanding of maladaptive coping strategies that may be potentially exacerbating caregiver distress among Latina caregivers.
ContributorsFelix, Vitae (Author) / Arciniega, Guillermo M (Thesis advisor) / Robinson-Kurpius, Sharon (Committee member) / Coon, David W. (Committee member) / Arizona State University (Publisher)
Created2011
150058-Thumbnail Image.png
Description
The current study explored whether intrinsically religious individuals are able to separate the "sin" from the "sinner" (i.e., separate category membership from behavior) when judging homosexual individuals, or whether they are instead subject to the negativity bias (judgments based solely on category membership) in moral judgments. All effects were expected

The current study explored whether intrinsically religious individuals are able to separate the "sin" from the "sinner" (i.e., separate category membership from behavior) when judging homosexual individuals, or whether they are instead subject to the negativity bias (judgments based solely on category membership) in moral judgments. All effects were expected to occur only for participants high in homophobia. Participants were 305 undergraduate male and female students at a large, public university in the southwestern U.S. Respondents read one of five scenarios that described gay or straight targets who were celibate or engaged in same or opposite sex relationships, then were asked to respond to a series of questions evaluating attitudes and behavioral intentions toward the target. Results revealed that homophobia led to a negativity bias in judgments of gay targets, which was intensified by intrinsic religiosity. However, individuals high on intrinsic religiosity and high on homophobia also differentiated between gay targets based on sexual behavior, such that gay targets who were celibate or in an opposite-sex relationship were rated more favorably than gay targets in a same-sex relationship. These findings demonstrate that the negativity bias and "sin vs. sinner" differentiation may both be occurring for intrinsically religious individuals. The moderating effect of homophobia on the interaction between intrinsic religiosity and judgments of gay and straight targets shows us that religiosity itself is not inherently tolerant or intolerant.
ContributorsFilip-Crawford, Gabrielle (Author) / Nagoshi, Craig T. (Thesis advisor) / Kwan, Virginia S.Y. (Committee member) / Neuberg, Steven L. (Committee member) / Arizona State University (Publisher)
Created2011
149992-Thumbnail Image.png
Description
Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness,

Process variations have become increasingly important for scaled technologies starting at 45nm. The increased variations are primarily due to random dopant fluctuations, line-edge roughness and oxide thickness fluctuation. These variations greatly impact all aspects of circuit performance and pose a grand challenge to future robust IC design. To improve robustness, efficient methodology is required that considers effect of variations in the design flow. Analyzing timing variability of complex circuits with HSPICE simulations is very time consuming. This thesis proposes an analytical model to predict variability in CMOS circuits that is quick and accurate. There are several analytical models to estimate nominal delay performance but very little work has been done to accurately model delay variability. The proposed model is comprehensive and estimates nominal delay and variability as a function of transistor width, load capacitance and transition time. First, models are developed for library gates and the accuracy of the models is verified with HSPICE simulations for 45nm and 32nm technology nodes. The difference between predicted and simulated σ/μ for the library gates is less than 1%. Next, the accuracy of the model for nominal delay is verified for larger circuits including ISCAS'85 benchmark circuits. The model predicted results are within 4% error of HSPICE simulated results and take a small fraction of the time, for 45nm technology. Delay variability is analyzed for various paths and it is observed that non-critical paths can become critical because of Vth variation. Variability on shortest paths show that rate of hold violations increase enormously with increasing Vth variation.
ContributorsGummalla, Samatha (Author) / Chakrabarti, Chaitali (Thesis advisor) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150044-Thumbnail Image.png
Description
The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays

The purpose of this study was to investigate the effect of partial exemplar experience on category formation and use. Participants had either complete or limited access to the three dimensions that defined categories by dimensions within different modalities. The concept of "crucial dimension" was introduced and the role it plays in category definition was explained. It was hypothesized that the effects of partial experience are not explained by a shifting of attention between dimensions (Taylor & Ross, 2009) but rather by an increased reliance on prototypical values used to fill in missing information during incomplete experiences. Results indicated that participants (1) do not fill in missing information with prototypical values, (2) integrate information less efficiently between different modalities than within a single modality, and (3) have difficulty learning only when partial experience prevents access to diagnostic information.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Mcbeath, Micheal (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2011
150048-Thumbnail Image.png
Description
A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene,

A wireless hybrid device for detecting volatile organic compounds (VOCs) has been developed. The device combines a highly selective and sensitive tuning-fork based detector with a pre-concentrator and a separation column. The selectivity and sensitivity of the tuning-fork based detector is optimized for discrimination and quantification of benzene, toluene, ethylbenzene, and xylenes (BTEX) via a homemade molecular imprinted polymer, and a specific detection and control circuit. The device is a wireless, portable, battery-powered, and cell-phone operated device. The device has been calibrated and validated in the laboratory and using selected ion flow tube mass spectrometry (SFIT-MS). The capability and robustness are also demonstrated in some field tests. It provides rapid and reliable detection of BTEX in real samples, including challenging high concentrations of interferents, and it is suitable for occupational, environmental health and epidemiological applications.
ContributorsChen, Zheng (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
150013-Thumbnail Image.png
Description
Few measurement tools provide reliable, valid data on both children's emotional and behavioral engagement in school. The School Liking and Avoidance Questionnaire (SLAQ) is one such self-report measure developed to evaluate a child's degree of engagement in the school setting as it is manifest in a child's school liking and

Few measurement tools provide reliable, valid data on both children's emotional and behavioral engagement in school. The School Liking and Avoidance Questionnaire (SLAQ) is one such self-report measure developed to evaluate a child's degree of engagement in the school setting as it is manifest in a child's school liking and school avoidance. This study evaluated the SLAQ's dimensionality, reliability, and validity. Data were gathered on children from kindergarten through 6th grade (n=396). Participants reported on their school liking and avoidance in the spring of each school year. Scores consistently represented two distinct, yet related subscales (i.e., school liking and school avoidance) that were reliable and stable over time. Validation analyses provided some corroboration of the construct validity of the SLAQ subscales, but evidence of predictive validity was inconsistent with the hypothesized relations (i.e., early report of school liking and school avoidance did not predict later achievement outcomes). In sum, the findings from this study provide some support for the dimensionality, reliability, and validity of the SLAQ and suggest that it can be used for the assessment of young children's behavioral and emotional engagement in school.
ContributorsSmith, Jillian (Author) / Ladd, Gary W. (Thesis advisor) / Ladd, Becky (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2011
149779-Thumbnail Image.png
Description
Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new

Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new form of justice: Substantive justice. Substantive justice focuses on how the legal system uses laws to constrain and direct human behavior, specifically focusing on the function and the structure of a law. The psychology of justice literature is missing the vital distinction between laws whose function is to create social opportunities versus threats and between laws structured concretely versus abstractly. In the present experiment, we found that participant evaluations of the fairness of the law, the outcome, and the decision-maker all varied depending on the function and structure of the law used as well as the outcome produced. Specifically, when considering adverse outcomes, individuals perceived laws whose function is to create liability (threats) as being fairer when structured as standards (abstract guidelines) rather than rules (concrete guidelines); however, the opposite is true when considering laws whose function is to create eligibility (opportunities). In juxtaposition, when receiving a favorable outcome, individuals perceived laws whose function is to create liability (threats) as being fairer when defined as rules (concrete guidelines) rather than standards (abstract guidelines).
ContributorsLovis-McMahon, David (Author) / Schweitzer, Nicholas J. (Thesis advisor) / Saks, Michael (Thesis advisor) / Kwan, Sau (Committee member) / Arizona State University (Publisher)
Created2011
149780-Thumbnail Image.png
Description
The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices,

The demand for handheld portable computing in education, business and research has resulted in advanced mobile devices with powerful processors and large multi-touch screens. Such devices are capable of handling tasks of moderate computational complexity such as word processing, complex Internet transactions, and even human motion analysis. Apple's iOS devices, including the iPhone, iPod touch and the latest in the family - the iPad, are among the well-known and widely used mobile devices today. Their advanced multi-touch interface and improved processing power can be exploited for engineering and STEM demonstrations. Moreover, these devices have become a part of everyday student life. Hence, the design of exciting mobile applications and software represents a great opportunity to build student interest and enthusiasm in science and engineering. This thesis presents the design and implementation of a portable interactive signal processing simulation software on the iOS platform. The iOS-based object-oriented application is called i-JDSP and is based on the award winning Java-DSP concept. It is implemented in Objective-C and C as a native Cocoa Touch application that can be run on any iOS device. i-JDSP offers basic signal processing simulation functions such as Fast Fourier Transform, filtering, spectral analysis on a compact and convenient graphical user interface and provides a very compelling multi-touch programming experience. Built-in modules also demonstrate concepts such as the Pole-Zero Placement. i-JDSP also incorporates sound capture and playback options that can be used in near real-time analysis of speech and audio signals. All simulations can be visually established by forming interactive block diagrams through multi-touch and drag-and-drop. Computations are performed on the mobile device when necessary, making the block diagram execution fast. Furthermore, the extensive support for user interactivity provides scope for improved learning. The results of i-JDSP assessment among senior undergraduate and first year graduate students revealed that the software created a significant positive impact and increased the students' interest and motivation and in understanding basic DSP concepts.
ContributorsLiu, Jinru (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Kostas (Committee member) / Qian, Gang (Committee member) / Arizona State University (Publisher)
Created2011
149645-Thumbnail Image.png
Description
Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen

Due to the growing concerns on the depletion of petroleum based energy resources and climate change; fuel cell technologies have received much attention in recent years. Proton exchange membrane fuel cell (PEMFCs) features high energy conversion efficiency and nearly zero greenhouse gas emissions, because of its combination of the hydrogen oxidation reaction (HOR) at anode side and oxygen reduction reaction (ORR) at cathode side. Synthesis of Pt nanoparticles supported on multi walled carbon nanotubes (MWCNTs) possess a highly durable electrochemical surface area (ESA) and show good power output on proton exchange membrane (PEM) fuel cell performance. Platinum on multi-walled carbon nanotubes (MWCNTs) support were synthesized by two different processes to transfer PtCl62- from aqueous to organic phase. While the first method of Pt/MWCNTs synthesis involved dodecane thiol (DDT) and octadecane thiol (ODT) as anchoring agent, the second method used ammonium lauryl sulfate (ALS) as the dispersion/anchoring agent. The particle size and distribution of platinum were examined by high-resolution transmission electron microscope (HRTEM). The TEM images showed homogenous distribution and uniform particle size of platinum deposited on the surface of MWCNTs. The single cell fuel cell performance of the Pt/MWCNTs synthesized thiols and ALS based electrode containing 0.2 (anode) and 0.4 mg (cathode) Pt.cm-2 were evaluated using Nafion-212 electrolyte with H2 and O2 gases at 80 oC and ambient pressure. The catalyst synthesis with ALS is relatively simple compared to that with thiols and also showed higher performance (power density reaches about 1070 mW.cm-2). The Electrodes with Pt/MWCNTs nanocatalysts synthesized using ALS were characterized by cyclic voltammetry (CV) for durability evaluation using humidified H2 and N2 gases at room temperature (21 oC) along with commercial Pt/C for comparison. The ESA measured by cyclic voltammetry between 0.15 and 1.2 V showed significant less degradation after 1000 cycles for ALS based Pt/MWCNTs.
ContributorsLiu, Xuan (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Munukutla, Lakshmi (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2011