Matching Items (3)
Filtering by

Clear all filters

152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
151183-Thumbnail Image.png
Description
Prehistoric farmers in the semi-arid American Southwest were challenged by marked spatial and temporal variation in, and overall low levels of, precipitation with which to grow their crops. One strategy they employed was to modify their landscape with rock alignments in order to concentrate surface water flow on their fields.

Prehistoric farmers in the semi-arid American Southwest were challenged by marked spatial and temporal variation in, and overall low levels of, precipitation with which to grow their crops. One strategy they employed was to modify their landscape with rock alignments in order to concentrate surface water flow on their fields. A second challenge that has been less focused on by archaeologists is the need to maintain soil fertility by replenishing nutrients removed from the soil by agricultural crops. Numerous studies have shown that rock alignments can result in long-lasting impacts on soil properties and fertility. However, the direction and magnitude of change is highly variable. While previous work has emphasized the importance of overland flow in replenishing soil nutrient pools, none have investigated the influence of eolian deposition as a contributor of mineral-derived nutrients. This thesis explores the effects of the construction of rock alignments, agricultural harvest, and eolian deposition on soil properties and fertility on Perry Mesa within the Agua Fria National Monument. This site experienced dramatic population increase in the late 1200s and marked depopulation in the early 1400s. Since that time, although agriculture ceased, the rock alignments have remains, continuing to influence runoff and sediment deposition. In the summer of 2009, I investigated deep soil properties and mineral-derived nutrients on fields near Pueblo La Plata, one of the largest pueblos on Perry Mesa. To examine the effects of rock alignments and agricultural harvest independent of one another, I sampled soils from replicated plots behind alignments paired with nearby plots that are not bordered by an alignment in both areas of high and low prehistoric agricultural intensity. I investigated soil provenance and the influence of deposition on mineral-derived nutrients through analysis of the chemical composition of the soil, bedrock and dust. Agricultural rock alignments were significantly associated with differences in soil texture, but neither rock alignments nor agricultural history were associated with significant differences in mineral-derived nutrients. Instead, eolian deposition may explain why nutrient pools are similar across agricultural history and rock alignment presence. Eolian deposition homogenized the surface soil, reducing the spatial heterogeneity of soils. Dust is important both as a parent material to the soils on Perry Mesa, and also a source of mineral-derived nutrients. This investigation suggests that prehistoric agriculture on Perry Mesa was not likely limited by long term soil fertility, but instead could have been sustained by eolian inputs.
ContributorsNakase, Dana Kozue (Author) / Hall, Sharon (Thesis advisor) / Spielmann, Katherine (Committee member) / Hartshorn, Anthony (Committee member) / Arizona State University (Publisher)
Created2012
Description
In Senegal, West Africa, soils are a vital resource for livelihoods and food security in smallholder farming communities. Low nitrogen (N) soils pose obvious challenges for crop production but may also, counterintuitively, promote the abundance of agricultural pests like the Senegalese locust, Oedaleus senegalensis. In this study I investigated how

In Senegal, West Africa, soils are a vital resource for livelihoods and food security in smallholder farming communities. Low nitrogen (N) soils pose obvious challenges for crop production but may also, counterintuitively, promote the abundance of agricultural pests like the Senegalese locust, Oedaleus senegalensis. In this study I investigated how the abundance of locusts and grasshoppers are impacted by soil fertility through plant nutrients and how these variables change across land use types. We worked in two rural farming villages in the Kaffrine region of Senegal. Overall, there was little variation in soil properties and an agricultural landscape low in soil organic matter (SOM) and inorganic soil nitrogen. I corroborated that SOM is a significant driver of soil inorganic N, which had a positive relationship to plant N content. Of the management practices we surveyed, fallowing fields was important for soil nutrient restoration and years spent fallow was significantly correlated to inorganic soil N and SOM. O. senegalensis was least abundant in groundnut areas where plant N was highest. Additionally, I found a significant negative correlation between O. senegalensis abundance and plant N, suggesting that plant nutrients are an important driver of their populations. Grasshoppers, excluding O. senegalensis, were more numerous in grazing areas and fallow areas, perhaps due to a higher diversity of ecological niches and host plants. These results connect land use, soil, and vegetation to herbivores and suggest that improving soil fertility could be used as an alternative to pesticides to keep locusts at bay and improve crop yields.
ContributorsWord, Mira (Author) / Hall, Sharon (Contributor) / Robinson, Brian (Contributor) / Manneh, Balanding (Contributor) / Beye, Alioune (Contributor) / Cease, Arianne (Contributor)
Created2018-04-10