Matching Items (8)
Filtering by

Clear all filters

150205-Thumbnail Image.png
Description
In today's world, unprecedented amounts of data of individual mobile objects have become more available due to advances in location aware technologies and services. Studying the spatio-temporal patterns, processes, and behavior of mobile objects is an important issue for extracting useful information and knowledge about mobile phenomena. Potential applications across

In today's world, unprecedented amounts of data of individual mobile objects have become more available due to advances in location aware technologies and services. Studying the spatio-temporal patterns, processes, and behavior of mobile objects is an important issue for extracting useful information and knowledge about mobile phenomena. Potential applications across a wide range of fields include urban and transportation planning, Location-Based Services, and logistics. This research is designed to contribute to the existing state-of-the-art in tracking and modeling mobile objects, specifically targeting three challenges in investigating spatio-temporal patterns and processes; 1) a lack of space-time analysis tools; 2) a lack of studies about empirical data analysis and context awareness of mobile objects; and 3) a lack of studies about how to evaluate and test agent-based models of complex mobile phenomena. Three studies are proposed to investigate these challenges; the first study develops an integrated data analysis toolkit for exploration of spatio-temporal patterns and processes of mobile objects; the second study investigates two movement behaviors, 1) theoretical random walks and 2) human movements in urban space collected by GPS; and, the third study contributes to the research challenge of evaluating the form and fit of Agent-Based Models of human movement in urban space. The main contribution of this work is the conceptualization and implementation of a Geographic Knowledge Discovery approach for extracting high-level knowledge from low-level datasets about mobile objects. This allows better understanding of space-time patterns and processes of mobile objects by revealing their complex movement behaviors, interactions, and collective behaviors. In detail, this research proposes a novel analytical framework that integrates time geography, trajectory data mining, and 3D volume visualization. In addition, a toolkit that utilizes the framework is developed and used for investigating theoretical and empirical datasets about mobile objects. The results showed that the framework and the toolkit demonstrate a great capability to identify and visualize clusters of various movement behaviors in space and time.
ContributorsNara, Atsushi (Author) / Torrens, Paul M. (Thesis advisor) / Myint, Soe W (Committee member) / Kuby, Michael (Committee member) / Griffin, William A. (Committee member) / Arizona State University (Publisher)
Created2011
151549-Thumbnail Image.png
Description
Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize

Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize uncertainty and how decision makers frame uncertainty. To bridge this gap between practice and research, this dissertation explores uncertainty visualization as a means for reframing uncertainty in geographic information systems for use in policy decision support through three connected topics. Initially, this research explores visualizing the relationship between uncertainty and policy outcomes as a means for incorporating policymakers' decision frames when visualizing uncertainty. Outcome spaces are presented as a method to represent the effect of uncertainty on policy outcomes. This method of uncertainty visualization acts as an uncertainty map, representing all possible outcomes for specific policy decisions. This conceptual model incorporates two variables, but implicit uncertainty can be extended to multivariate representations. Subsequently, this work presented a new conceptualization of uncertainty, termed explicit and implicit, that integrates decision makers' framing of uncertainty into uncertainty visualization. Explicit uncertainty is seen as being separate from the policy outcomes, being described or displayed separately from the underlying data. In contrast, implicit uncertainty links uncertainty to decision outcomes, and while understood, it is not displayed separately from the data. The distinction between explicit and implicit is illustrated through several examples of uncertainty visualization founded in decision science theory. Lastly, the final topic assesses outcome spaces for communicating uncertainty though a human subject study. This study evaluates the effectiveness of the implicit uncertainty visualization method for communicating uncertainty for policy decision support. The results suggest that implicit uncertainty visualization successfully communicates uncertainty in results, even though uncertainty is not explicitly shown. Participants also found the implicit visualization effective for evaluating policy outcomes. Interestingly, participants also found the explicit uncertainty visualization to be effective for evaluating the policy outcomes, results that conflict with prior research.
ContributorsDeitrick, Stephanie (Author) / Wentz, Elizabeth (Thesis advisor) / Goodchild, Michael (Committee member) / Edsall, Robert (Committee member) / Gober, Patricia (Committee member) / Arizona State University (Publisher)
Created2013
151884-Thumbnail Image.png
Description
The objective of this dissertation is to empirically analyze the results of the retail location decision making process and how chain networks evolve given their value platform. It employs one of the largest cross-sectional databases of retailers ever assembled, including 50 US retail chains and over 70,000 store locations. Three

The objective of this dissertation is to empirically analyze the results of the retail location decision making process and how chain networks evolve given their value platform. It employs one of the largest cross-sectional databases of retailers ever assembled, including 50 US retail chains and over 70,000 store locations. Three closely related articles, which develop new theory explaining location deployment and behaviors of retailers, are presented. The first article, "Regionalism in US Retailing," presents a comprehensive spatial analysis of the domestic patterns of retailers. Geographic Information Systems (GIS) and statistics examine the degree to which the chains are deployed regionally versus nationally. Regional bias is found to be associated with store counts, small market deployment, and the location of the founding store, but not the age of the chain. Chains that started in smaller markets deploy more stores in other small markets and vice versa for chains that started in larger markets. The second article, "The Location Types of US Retailers," is an inductive analysis of the types of locations chosen by the retailers. Retail locations are classified into types using cluster analysis on situational and trade area data at the geographical scale of the individual stores. A total of twelve distinct location types were identified. A second cluster analysis groups together the chains with the most similar location profiles. Retailers within the same retail business often chose similar types of locations and were placed in the same clusters. Retailers generally restrict their deployment to one of three overall strategies including metropolitan, large retail areas, or market size variety. The third article, "Modeling Retail Chain Expansion and Maturity through Wave Analysis: Theory and Application to Walmart and Target," presents a theory of retail chain expansion and maturity whereby retailers expand in waves with alternating periods of faster and slower growth. Walmart diffused gradually from Arkansas and Target grew from the coasts inward. They were similar, however, in that after expanding into an area they reached a point of saturation and opened fewer stores, then moved on to other areas, only to revisit the earlier areas for new stores.
ContributorsJoseph, Lawrence (Author) / Kuby, Michael (Thesis advisor) / Matthews, Richard (Committee member) / Ó Huallacháin, Breandán (Committee member) / Kumar, Ajith (Committee member) / Arizona State University (Publisher)
Created2013
149488-Thumbnail Image.png
Description

Concerns about Peak Oil, political instability in the Middle East, health hazards, and greenhouse gas emissions of fossil fuels have stimulated interests in alternative fuels such as biofuels, natural gas, electricity, and hydrogen. Alternative fuels are expected to play an important role in a transition to a sustainable transportation system.

Concerns about Peak Oil, political instability in the Middle East, health hazards, and greenhouse gas emissions of fossil fuels have stimulated interests in alternative fuels such as biofuels, natural gas, electricity, and hydrogen. Alternative fuels are expected to play an important role in a transition to a sustainable transportation system. One of the major barriers to the success of alternative-fuel vehicles (AFV) is the lack of infrastructure for producing, distributing, and delivering alternative fuels. Efficient methods that locate alternative-fuel refueling stations are essential in accelerating the advent of a new energy economy. The objectives of this research are to develop a location model and a Spatial Decision Support System (SDSS) that aims to support the decision of developing initial alternative-fuel stations. The main focus of this research is the development of a location model for siting alt-fuel refueling stations considering not only the limited driving range of AFVs but also the necessary deviations that drivers are likely to make from their shortest paths in order to refuel their AFVs when the refueling station network is sparse. To add reality and applicability of the model, the research is extended to include the development of efficient heuristic algorithms, the development of a method to incorporate AFV demand estimates into OD flow volumes, and the development of a prototype SDSS. The model and methods are tested on real-world road network data from state of Florida. The Deviation-Flow Refueling Location Model (DFRLM) locates facilities to maximize the total flows refueled on deviation paths. The flow volume is assumed to be decreasing as the deviation increases. Test results indicate that the specification of the maximum allowable deviation and specific deviation penalty functional form do have a measurable effect on the optimal locations of facilities and objective function values as well. The heuristics (greedy-adding and greedy-adding with substitution) developed here have been identified efficient in solving the DFRLM while AFV demand has a minor effect on the optimal facility locations. The prototype SDSS identifies strategic station locations by providing flexibility in combining various AFV demand scenarios. This research contributes to the literature by enhancing flow-based location models for locating alternative-fuel stations in four dimensions: (1) drivers' deviations from their shortest paths, (2) efficient solution approaches for the deviation problem, (3) incorporation of geographically uneven alt-fuel vehicle demand estimates into path-based origin-destination flow data, and (4) integration into an SDSS to help decision makers by providing solutions and insights into developing alt-fuel stations.

ContributorsKim, Jong-Geun (Author) / Kuby, Michael J (Thesis advisor) / Wentz, Elizabeth (Committee member) / Murray, Alan T. (Committee member) / Arizona State University (Publisher)
Created2010
171563-Thumbnail Image.png
Description
With the acceleration of urbanization in many parts of the world, transportation challenges such as traffic congestion, increasing carbon emissions, and the “first/last-mile” connectivity problems for commuter travel have arisen. Transport experts and policymakers have proposed shared transportation, such as dockless e-scooters and bike-sharing programs, to solve some of these

With the acceleration of urbanization in many parts of the world, transportation challenges such as traffic congestion, increasing carbon emissions, and the “first/last-mile” connectivity problems for commuter travel have arisen. Transport experts and policymakers have proposed shared transportation, such as dockless e-scooters and bike-sharing programs, to solve some of these urban transportation issues. In cities with high population densities, multimodal mobility hubs designed to integrate shared and public transportation can be implemented to achieve faster public connections and thus increase access to public transport on both access and egress sides. However, haphazard drop-offs of these dockless vehicles have led to complaints from community members and motivated the need for neighborhood-level parking areas (NLPAs). Simultaneously, concerns about the equitable distribution of transportation infrastructure have been growing and have led to the Biden Administration announcing the Justice40 Initiative which requires 40% of certain federal investments to benefit disadvantaged communities. To plan a system of NLPAs to address not only the transportation shortcomings while elevating these recent equity goals, this thesis develops a multi-objective optimal facility location model that maximizes coverage of both residential areas and transit stations while including a novel constraint to satisfy the requirements of Justice40. The model is applied to the City of Tempe, Arizona, and uses GIS data and spatial analyses of the existing public transportation stops, estimates of transit station boardings, population by census block, and locations of disadvantaged communities to optimize NLPA location. The model generates Pareto optimal tradeoff curves for different numbers of NLPAs to find the non-dominated solutions for the coverage of population nodes and boardings. The analysis solves the multi-objective model with and without the equity constraint, showing the effect of considering equity in developing a multimodal hub system, especially for disadvantaged communities. The proposed model can provide a decision support tool for transport and public authorities to plan future investments and facilitate multimodal transport.
ContributorsQuan, Hejun (Author) / Kuby, Michael (Thesis advisor) / Frazier, Amy (Thesis advisor) / Tong, Daoqin (Committee member) / Arizona State University (Publisher)
Created2022
Description

Universities host a large, young and diverse population that commutes to the same location every day, which makes them ideally suited for public transportation ridership. However, at many universities in the US, this potential for high levels of transit ridership is not being maximized. This research aims to identify the

Universities host a large, young and diverse population that commutes to the same location every day, which makes them ideally suited for public transportation ridership. However, at many universities in the US, this potential for high levels of transit ridership is not being maximized. This research aims to identify the areas where Valley Metro’s public transit service to ASU’s Tempe campus is over- and under-performing in comparison with the overall public transportation service to the entire Phoenix metro area. The hypothesis states that proximity to campus and the convenience of using public transportation would be the two main factors in determining the success of an area’s public transportation service. ASU’s Parking & Transit Services provided confidential data with the addresses of all the students and employees who purchased a parking pass, transit pass and bike registration. With these data, the public transportation mode share for commuters to ASU in each census block group was calculated and compared to the mode share for the general public, which was based on US Census data. The difference between the public transit mode shares of ASU pass holders vs. commuting by the general public was then computed and analyzed to identify areas as hot and cold spots. These heat maps are then compared to the hypothesized factors of proximity to campus and the convenience of public transportation in terms of the light rail line, park-and-ride lots, and number of transfers needed to connect to campus. The transfers were estimated using origin and destination survey data provided by Valley Metro. Results show that the convenience of public transportation was a driving factor in explaining where the transit mode share to ASU is higher than that of the general public, whereas the proximity to campus had little impact on the areas with high ASU-specific transit mode shares. There is an absence of hot spots directly around the campus which is explained by the combination of both high transit share for the non-ASU population and the large share of ASU students and employees using active transportation and free circulator buses this close to campus. These findings are significant specifically to ASU because the university can learn where the transit service is performing well and where it is underperforming. Using these findings, ASU PTS can adjust its pricing, policies, services and infrastructure and work with Valley Metro and the City of Tempe to improve the ridership for both students and employees. Future research can compare more factors to further interpret what leads to success for transit service to university campuses.

ContributorsLewin, Nicholas (Author) / Kuby, Michael (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2023-05
153861-Thumbnail Image.png
Description
Alternative fuel vehicles (AFVs) have seen increased attention as a way to reduce reliance on petroleum for transportation, but adoption rates lag behind conventional vehicles. One crucial barrier to their proliferation is the lack of a convenient refueling infrastructure, and there is not a consensus on how to locate initial

Alternative fuel vehicles (AFVs) have seen increased attention as a way to reduce reliance on petroleum for transportation, but adoption rates lag behind conventional vehicles. One crucial barrier to their proliferation is the lack of a convenient refueling infrastructure, and there is not a consensus on how to locate initial stations. Some approaches recommend placing stations near where early adopters live. An alternate group of methods places stations along busy travel routes that drivers from across the metropolitan area traverse each day. To assess which theoretical approach is most appropriate, drivers of compressed natural gas (CNG) vehicles in Southern California were surveyed at stations while they refueled. Through GIS analysis, results demonstrate that respondents refueled on the way between their origins and destinations ten times more often than they refueled near their home, when no station satisfied both criteria. Freeway interchanges, which carry high daily passing traffic volumes in metropolitan areas, can be appropriate locations for initial stations based on these results. Stations cannot actually be built directly at these interchange sites, so suitable locations on nearby street networks must be chosen. A network GIS method is developed to assess street network locations' ability to capture all traffic passing through 72 interchanges in greater Los Angeles, using deviation from a driver's shortest path as the metric to assess a candidate site's suitability. There is variation in the ability of these locations to capture passing traffic both within and across interchanges, but only 7% of sites near interchanges can conveniently capture all travel directions passing through the interchange, indicating that an ad hoc station location strategy is unlikely to succeed. Surveys were then conducted at CNG stations near freeway interchanges to assess how drivers perceive and access refueling stations in these environments. Through comparative analysis of drivers' perceptions of stations, consideration of their choice sets, and the observed frequency of the use of a freeway to both access and leave these stations, results indicate that initial AFV stations near freeway interchanges can play an important role in regional AFV infrastructure.
ContributorsKelley, Scott (Author) / Kuby, Michael (Thesis advisor) / Wentz, Elizabeth (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2015
154571-Thumbnail Image.png
Description
Drawing from the fields of coastal geography, political ecology, and institutions, this dissertation uses Cape Cod, MA, as a case study, to investigate how chronic and acute climate-related coastal hazards, socio-economic characteristics, and governance and decision-making interact to produce more resilient or at-risk coastal communities. GIS was used to model

Drawing from the fields of coastal geography, political ecology, and institutions, this dissertation uses Cape Cod, MA, as a case study, to investigate how chronic and acute climate-related coastal hazards, socio-economic characteristics, and governance and decision-making interact to produce more resilient or at-risk coastal communities. GIS was used to model the impacts of sea level rise (SLR) and hurricane storm surge scenarios on natural and built infrastructure. Social, gentrification, and tourism indices were used to identify communities differentially vulnerable to coastal hazards. Semi-structured interviews with planners and decision-makers were analyzed to examine hazard mitigation planning.

The results of these assessments demonstrate there is considerable variation in coastal hazard impacts across Cape Cod towns. First, biophysical vulnerability is highly variable with the Outer Cape (e.g., Provincetown) at risk for being temporarily and/or permanently isolated from the rest of the county. In most towns, a Category 1 accounts for the majority of inundation with impacts that will be intensified by SLR. Second, gentrification in coastal communities can create new social vulnerabilities by changing economic bases and disrupting communities’ social networks making it harder to cope. Moreover, higher economic dependence on tourism can amplify towns’ vulnerability with reduced capacities to recover. Lastly, low political will is an important barrier to effective coastal hazard mitigation planning and implementation particularly given the power and independence of town government on Cape Cod. Despite this independence, collaboration will be essential for addressing the trans-boundary effects of coastal hazards and provide an opportunity for communities to leverage their limited resources for long-term hazard mitigation planning.

This research contributes to the political ecology of hazards and vulnerability research by drawing from the field of institutions, by examining how decision-making processes shape vulnerabilities and capacities to plan and implement mitigation strategies. While results from this research are specific to Cape Cod, it demonstrates a broader applicability of the “Hazards, Vulnerabilities, and Governance” framework for assessing other hazards (e.g., floods, fires, etc.). Since there is no “one-size-fits-all” approach to mitigating coastal hazards, examining vulnerabilities and decision-making at local scales is necessary to make resiliency and mitigation efforts specific to communities’ needs.
ContributorsGentile, Lauren Elyse (Author) / Bolin, Bob (Thesis advisor) / Wentz, Elizabeth (Committee member) / White, Dave (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2016