Matching Items (37)
Filtering by

Clear all filters

152418-Thumbnail Image.png
Description
Species distribution modeling is used to study changes in biodiversity and species range shifts, two currently well-known manifestations of climate change. The focus of this study is to explore how distributions of suitable habitat might shift under climate change for shrub communities within the Santa Monica Mountains National Recreation Area

Species distribution modeling is used to study changes in biodiversity and species range shifts, two currently well-known manifestations of climate change. The focus of this study is to explore how distributions of suitable habitat might shift under climate change for shrub communities within the Santa Monica Mountains National Recreation Area (SMMNRA), through a comparison of community level to individual species level distribution modeling. Species level modeling is more commonly utilized, in part because community level modeling requires detailed community composition data that are not always available. However, community level modeling may better detect patterns in biodiversity. To examine the projected impact on suitable habitat in the study area, I used the MaxEnt modeling algorithm to create and evaluate species distribution models with presence only data for two future climate models at community and individual species levels. I contrasted the outcomes as a method to describe uncertainty in projected models. To derive a range of sensitivity outcomes I extracted probability frequency distributions for suitable habitat from raster grids for communities modeled directly as species groups and contrasted those with communities assembled from intersected individual species models. The intersected species models were more sensitive to climate change relative to the grouped community models. Suitable habitat in SMMNRA's bounds was projected to decline from about 30-90% for the intersected models and about 20-80% for the grouped models from its current state. Models generally captured floristic distinction between community types as drought tolerance. Overall the impact on drought tolerant communities, growing in hotter, drier habitat such as Coastal Sage Scrub, was predicted to be less than on communities growing in cooler, moister more interior habitat, such as some chaparral types. Of the two future climate change models, the wetter model projected less impact for most communities. These results help define risk exposure for communities and species in this conservation area and could be used by managers to focus vegetation monitoring tasks to detect early response to climate change. Increasingly hot and dry conditions could motivate opportunistic restoration projects for Coastal Sage Scrub, a threatened vegetation type in Southern California.
ContributorsJames, Jennifer (Author) / Franklin, Janet (Thesis advisor) / Rey, Sergio (Committee member) / Wentz, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
152296-Thumbnail Image.png
Description
Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level.

Ten regional climate models (RCMs) and atmosphere-ocean generalized model parings from the North America Regional Climate Change Assessment Program were used to estimate the shift of extreme precipitation due to climate change using present-day and future-day climate scenarios. RCMs emulate winter storms and one-day duration events at the sub-regional level. Annual maximum series were derived for each model pairing, each modeling period; and for annual and winter seasons. The reliability ensemble average (REA) method was used to qualify each RCM annual maximum series to reproduce historical records and approximate average predictions, because there are no future records. These series determined (a) shifts in extreme precipitation frequencies and magnitudes, and (b) shifts in parameters during modeling periods. The REA method demonstrated that the winter season had lower REA factors than the annual season. For the winter season the RCM pairing of the Hadley regional Model 3 and the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model had the lowest REA factors. However, in replicating present-day climate, the pairing of the Abdus Salam International Center for Theoretical Physics' Regional Climate Model Version 3 with the Geophysical Fluid-Dynamics Laboratory atmospheric-land generalized model was superior. Shifts of extreme precipitation in the 24-hour event were measured using precipitation magnitude for each frequency in the annual maximum series, and the difference frequency curve in the generalized extreme-value-function parameters. The average trend of all RCM pairings implied no significant shift in the winter annual maximum series, however the REA-selected models showed an increase in annual-season precipitation extremes: 0.37 inches for the 100-year return period and for the winter season suggested approximately 0.57 inches for the same return period. Shifts of extreme precipitation were estimated using predictions 70 years into the future based on RCMs. Although these models do not provide climate information for the intervening 70 year period, the models provide an assertion on the behavior of future climate. The shift in extreme precipitation may be significant in the frequency distribution function, and will vary depending on each model-pairing condition. The proposed methodology addresses the many uncertainties associated with the current methodologies dealing with extreme precipitation.
ContributorsRiaño, Alejandro (Author) / Mays, Larry W. (Thesis advisor) / Vivoni, Enrique (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152502-Thumbnail Image.png
Description
Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced

Climate change has been one of the major issues of global economic and social concerns in the past decade. To quantitatively predict global climate change, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations have organized a multi-national effort to use global atmosphere-ocean models to project anthropogenically induced climate changes in the 21st century. The computer simulations performed with those models and archived by the Coupled Model Intercomparison Project - Phase 5 (CMIP5) form the most comprehensive quantitative basis for the prediction of global environmental changes on decadal-to-centennial time scales. While the CMIP5 archives have been widely used for policy making, the inherent biases in the models have not been systematically examined. The main objective of this study is to validate the CMIP5 simulations of the 20th century climate with observations to quantify the biases and uncertainties in state-of-the-art climate models. Specifically, this work focuses on three major features in the atmosphere: the jet streams over the North Pacific and Atlantic Oceans and the low level jet (LLJ) stream over central North America which affects the weather in the United States, and the near-surface wind field over North America which is relevant to energy applications. The errors in the model simulations of those features are systematically quantified and the uncertainties in future predictions are assessed for stakeholders to use in climate applications. Additional atmospheric model simulations are performed to determine the sources of the errors in climate models. The results reject a popular idea that the errors in the sea surface temperature due to an inaccurate ocean circulation contributes to the errors in major atmospheric jet streams.
ContributorsKulkarni, Sujay (Author) / Huang, Huei-Ping (Thesis advisor) / Calhoun, Ronald (Committee member) / Peet, Yulia (Committee member) / Arizona State University (Publisher)
Created2014
153423-Thumbnail Image.png
Description
As climate change becomes a greater challenge in today's society, it is critical to understand young people's perceptions of the phenomenon because they will become the next generation of decision-makers. This study examines knowledge, beliefs, and behaviors among high school students. The subjects of this study include students from high

As climate change becomes a greater challenge in today's society, it is critical to understand young people's perceptions of the phenomenon because they will become the next generation of decision-makers. This study examines knowledge, beliefs, and behaviors among high school students. The subjects of this study include students from high school science classes in Phoenix, Arizona, and Plainfield, Illinois. Using surveys and small group interviews to engage students in two climatically different locations, three questions were answered:

1) What do American students know and believe about climate change? How is knowledge related to beliefs?

2) What types of behaviors are students exhibiting that may affect climate change? How do beliefs relate to behavioral choices?

3) Do climate change knowledge, beliefs, and behaviors vary between geographic locations in the United States?

The results of this study begin to highlight the differences between knowledge, beliefs, and behaviors around the United States. First, results showed that students have heard of climate change but often confused aspects of the problem, and they tended to focus on causes and impacts, as opposed to solutions. Related to beliefs, students tended to believe that climate change is caused by both humans and natural trends, and would affect plant and animal species more than themselves and their families. Second, students were most likely to participate in individual behaviors such as turning off lights and electronics, and least likely to take public transportation and eat a vegetarian meal. Individual behaviors seem to be most relevant to this age group, in contrast to policy solutions. Third, students in Illinois felt they would be more likely to experience colder temperatures and more precipitation than those in Arizona, where students were more concerned about rising temperatures.

Understanding behaviors, motivations behind beliefs and choices, and barriers to actions can support pro-environmental behavior change. Educational strategies can be employed to more effectively account for the influences on a young person's belief formation and behavior choices. Providing engagement opportunities with location-specific solutions that are more feasible for youth to participate in on their own could also support efforts for behavior change.
ContributorsKruke, Laurel (Author) / Larson, Kelli (Thesis advisor) / Klinsky, Sonja (Committee member) / White, Dave (Committee member) / Arizona State University (Publisher)
Created2015
153416-Thumbnail Image.png
Description
Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind.

Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind. As a single wind turbine is insufficient, multiple turbines are installed forming a wind farm. Generally, wind farms can have hundreds to thousands of turbines concentrated in a small region. There have been multiple studies centering the influence of weather on such wind farms, but no substantial research focused on how wind farms effect local climate. Technological advances have allowed development of commercial wind turbines with a power output greater than 7.58 MW. This has led to a reduction in required number of turbines and has optimized land usage. Hence, current research considers higher power density compared to previous works that relied on wind farm density of 2 to 4 W/m 2 . Simulations were performed using Weather Research and Forecasting software provided by NCAR. The region of simulation is Southern Oregon, with domains including both onshore and offshore wind farms. Unlike most previous works, where wind farms were considered to be on a flat ground, effects of topography have also been considered here. Study of seasonal effects over wind farms has provided better insight into changes in local wind direction. Analysis of mean velocity difference across wind farms at a height of 10m and 150m gives an understanding of wind velocity profiles. Results presented in this research tends to contradict earlier belief that velocity reduces throughout the farm. Large scale simulations have shown that sometimes, more than 50% of the farm can have an increased wind velocity of up to 1m/s

at an altitude of 10m.
ContributorsKadiyala, Yogesh Rao (Author) / Huang, Huei-Ping (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
150151-Thumbnail Image.png
Description
In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to a more sustainable transportation system with reduced greenhouse gas emissions

In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to a more sustainable transportation system with reduced greenhouse gas emissions and fossil energy consumption. This study investigates the feasibility of high-speed rail development as a long-term greenhouse gas emission mitigation strategy while considering major uncertainties in the technological and operational characteristics of intercity travel. First, I develop a general model for evaluating the emissions impact of intercity travel modes. This model incorporates aspects of life-cycle assessment and technological forecasting. The model is then used to compare future scenarios of energy and greenhouse gas emissions associated with the development of high-speed rail and other intercity travel technologies. Three specific rail corridors are evaluated and policy guidelines are developed regarding the emissions impacts of these investments. The results suggest prioritizing high-speed rail investments on short, dense corridors with fewer stops. Likewise, less emphasis should be placed on larger investments that require long construction times due to risks associated with payback of embedded emissions as competing technology improves.
ContributorsBurgess, Edward (Author) / Williams, Eric (Thesis advisor) / Fink, Jonathan (Thesis advisor) / Yaro, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150412-Thumbnail Image.png
Description
With the ongoing drought surpassing a decade in Arizona, scholars, water managers and decision-makers have heightened attention to the availability of water resources, especially in rapidly growing regions where demand may outgrow supplies or outpace the capacity of the community water systems. Community water system managing entities and the biophysical

With the ongoing drought surpassing a decade in Arizona, scholars, water managers and decision-makers have heightened attention to the availability of water resources, especially in rapidly growing regions where demand may outgrow supplies or outpace the capacity of the community water systems. Community water system managing entities and the biophysical and social characteristics of a place mediate communities' vulnerability to hazards such as drought and long-term climate change. The arid southwestern Phoenix metropolitan area is illustrative of the challenges that developed urban areas in arid climates face globally as population growth and climate change stress already fragile human-environmental systems. This thesis reveals the factors abating and exacerbating differential community water system vulnerability to water scarcity in communities simultaneously facing drought and rapid peri-urban growth. Employing a grounded, qualitative comparative case study approach, this thesis explores the interaction of social, biophysical and institutional factors as they effect the exposure, sensitivity and adaptive capacity of community water systems in Cave Creek and Buckeye, Arizona. Buckeye, once a small agricultural town in the West Valley, is wholly dependent on groundwater and currently planning for massive development to accommodate 218,591 new residents by 2020. Amid desert hills and near Tonto National Forest in the North Valley, Cave Creek is an upscale residential community suffering frequent water outages due to aging infrastructure and lack of system redundancy. Analyzing interviews, media accounts and policy documents, a narrative was composed explaining how place based factors, nested within a regional institutional water management framework, impact short and long-term vulnerability. This research adds to the library of vulnerability assessments completed using Polsky et al.'s Vulnerability Scoping Diagram and serves a pragmatic need assisting in the development of decision making tools that better represent the drivers of placed based vulnerability in arid metropolitan regions.
ContributorsZautner, Lilah (Author) / Larson, Kelli (Thesis advisor) / Bolin, Bob (Committee member) / Chhetri, Netra (Committee member) / Arizona State University (Publisher)
Created2011
151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
151174-Thumbnail Image.png
Description
The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods,

The North American Monsoon (NAM) is characterized by high inter- and intra-seasonal variability, and potential climate change effects have been forecasted to increase this variability. The potential effects of climate change to the hydrology of the southwestern U.S. is of interest as they could have consequences to water resources, floods, and land management. I applied a distributed watershed model, the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS), to the Beaver Creek basin in Arizona. This sub-basin of the Verde River is representative of the regional topography, land cover, and soils distribution. As such, it can serve to illustrate the utility of distributed models for change assessment studies. Model calibration was performed utilizing radar-based NEXRAD data, and comparisons were done to two additional sources of precipitation data: ground-based stations and the North American Land Data Assimilation System (NLDAS). Comparisons focus on the spatiotemporal distributions of precipitation and stream discharge. Utilizing the calibrated model, I applied scenarios from the HadCM3 General Circulation Model (GCM) which was dynamically downscaled by the Weather Research and Forecast (WRF) model, to refine the representation of Arizona's regional climate. Two time periods were examined, a historical 1990-2000 and a future 2031-2040, to evaluate the hydrologic consequence in the form of differences and similarities between the decadal averages for temperature, precipitation, stream discharge and evapotranspiration. Results indicate an increase in mean air temperature over the basin by 1.2 ºC. The average decadal precipitation amounts increased between the two time periods by 2.4 times that of the historical period and had an increase in variability that was 3 times the historical period. For the future period, modeled streamflow discharge in the summer increased by a factor of 3. There was no significant change in the average evapotranspiration (ET). Overall trends of increase precipitation and variability for future climate scenarios have a more significant effect on the hydrologic response than temperature increases in the system during NAM in this study basin. The results from this study suggest that water management in the Beaver Creek will need to adapt to higher summer streamflow amounts.
ContributorsHawkins, Gretchen (Author) / Vivoni, Enrique R. (Thesis advisor) / Semken, Steven (Committee member) / Mays, Larry W. (Committee member) / Arizona State University (Publisher)
Created2012
Description
Growing concerns over climate change and the lack of a federal climate policy have prompted many sub-national organizations to undertake greenhouse gas (GHG) mitigation actions on their own. However, the interventions associated with these efforts are typically selected in a top-down and ad hoc manner, and have not created the

Growing concerns over climate change and the lack of a federal climate policy have prompted many sub-national organizations to undertake greenhouse gas (GHG) mitigation actions on their own. However, the interventions associated with these efforts are typically selected in a top-down and ad hoc manner, and have not created the desired GHG emissions reductions. Accordingly, new approaches are needed to identify, select, develop, and coordinate effective climate change mitigation interventions in local and regional contexts. This thesis develops a process to create a governance system for negotiating local and regional climate interventions. The process consists of four phases: 1) mapping the overall transition, 2) reconstructing the current intervention selection system, 3) assessing the system against principles identified in the literature, and 4) creating an improved system based on the assessment. This process gives users a detailed understanding of how the overall transition has progressed, how and why interventions are currently selected, what changes are needed to improve the selection system, and how to re-structure the system to create more desirable outcomes. The process results in an improved system that relies on participation, coordination, and accountability to proactively select evidence-based interventions that incorporate the interests of stakeholders and achieve system-level goals. The process was applied to climate change mitigation efforts underway in Sonoma County, California to explore the implications of real-world application, and demonstrate its utility for current climate change mitigation efforts. Note that results and analysis from interviews with Sonoma County climate actors are included as a supplementary file.
ContributorsCulotta, Daniel Scott (Author) / Wiek, Arnim (Thesis advisor) / Basile, George (Committee member) / Shrestha, Milan (Committee member) / Arizona State University (Publisher)
Created2012