Matching Items (412)
Filtering by

Clear all filters

149657-Thumbnail Image.png
Description
The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to

The Toledo Core Based Statistical Area (CBSA) presents an interesting case study for the new sulfur dioxide (SO2) one hour standard. Since no SO2 monitor within 75 miles to estimate the attainment status of the area, American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used in this study to predict potential problems associated with the newly revised standard. The Toledo CBSA is home to two oil refineries, a glass making industry, several coal fired lime kilns, and a sulfuric acid regeneration plant, The CBSA 3 has coal fired power plants within a 30 mile radius of its center. Additionally, Toledo is a major Great Lakes shipping port visited by both lake and ocean going vessels. As a transportation hub, the area is also traversed by several rail lines which feed four rail switching yards. Impacts of older generation freighters, or "steamers", utilizing high sulfur "Bunker C" fuel oil in the area is also an issue. With the unique challenges presented by an SO2 one hour standard, this study attempted to estimate potential problem areas in advance of any monitoring data being gathered. Based on the publicly available data as inputs, it appears that a significant risk of non-attainment may exist in the Toledo CBSA. However, future on-the-books controls and currently proposed regulatory actions appear to drive the risk below significance by 2015. Any designation as non-attainment should be self-correcting and without need for controls other than those used in these models. The outcomes of this screening study are intended for use as a basis for assessments for other mid-sized, industrial areas without SO2 monitors. The results may also be utilized by industries and planning groups within the Toledo CBSA to address potential issues in advance of monitoring system deployment to lower the risk of attaining long term or perpetual non-attainment status.
ContributorsMyers, Greg Francis (Author) / Olson, Larry (Thesis advisor) / Edwards, David (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
132640-Thumbnail Image.png
Description
Pollution is an increasing problem around the world, and one of the main forms it takes is air pollution. Air pollution, from oxides and dioxides to particulate matter, continues to contribute to millions of deaths each year, which is more than the next three leading causes of environment-related death combined.

Pollution is an increasing problem around the world, and one of the main forms it takes is air pollution. Air pollution, from oxides and dioxides to particulate matter, continues to contribute to millions of deaths each year, which is more than the next three leading causes of environment-related death combined. Plus, the problem is only growing as industrial plants, factories, and transportation continues to rapidly increase across the globe. Those most affected include less developed countries and individuals with pre-existing respiratory conditions. Although many citizens know about this issue, it is often unclear what times and locations are worst in terms of pollutant concentration as it can vary on the time of day, local activity, and other variable factors. As a result, citizens lack the knowledge and resources to properly combat or avoid air pollution, as well as the data and evidence to support any sort of regulatory change. Many companies and organizations have tried to address this through Air Quality Indexes (AQIs) but are not focused enough to help the everyday citizen, and often fail to include many significant pollutants. Thus, we sought to address this issue in a cost-effective way through creating a network of IoT (Internet of Things) devices and deploying them in a select area of Tempe, Arizona. We utilized Arduino Microprocessors and Wireless Radio Frequency Transceivers to send and receive air pollution data in real time. Then, displayed this data in such a way that it could be released to the public via web or mobile app. Furthermore, the product is cheap enough to be reproduced and sold in bulk as well as scaled and customized to be compatible with dozens of different air quality sensors.
ContributorsCoury, Abrahm Philip (Co-author) / Gillespie, Cody (Co-author) / Ren, Fengbo (Thesis director) / Shrivastava, Aviral (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
ContributorsSchildkret, David (Conductor) / Chamber Singers (Performer) / ASU Library. Music Library (Publisher)
Created2018-02-10
173002-Thumbnail Image.png
Description

In the early 2000s, Richard S. Legro, Mark V. Sauer, Gilbert L. Mottla, Kevin S. Richter, William C. Dodson, and Duanping Liao studied the relationship between air pollution and reproductive complications. In the United States, Legro’s team tracked thousands of women undergoing in vitro fertilization, or IVF, along with the

In the early 2000s, Richard S. Legro, Mark V. Sauer, Gilbert L. Mottla, Kevin S. Richter, William C. Dodson, and Duanping Liao studied the relationship between air pollution and reproductive complications. In the United States, Legro’s team tracked thousands of women undergoing in vitro fertilization, or IVF, along with the air quality of both the IVF clinics and patients’ home locations. IVF is a reproductive technology during which a physician obtains mature eggs from a patient’s ovaries and fertilizes them with sperm in a lab setting outside of the body, after which the physician transfers the fertilized eggs into the patient’s uterus. As stated in Legro’s publication, Legro suspected that poor air quality would adversely affect live birth rates during IVF, so he compiled and analyzed the various types of pollutants that IVF patients were naturally exposed to in their homes and clinics. Legro’s experiment led to an increased awareness among patients about the dangers of conceiving via IVF in highly polluted areas.

Created2021-05-05
189340-Thumbnail Image.png
Description
As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering.

As air quality standards become more stringent to combat poor air quality, there is a greater need for more effective pollutant control measures and increased air monitoring network coverage. Polluted air, in the form of aerosols and gases, can impact respiratory and cardiovascular health, visibility, the climate, and material weathering. This work demonstrates how traditional networks can be used to study generational events, how these networks can be supplemented with low-cost sensors, and the effectiveness of several control measures. First, an existing network was used to study the effect of COVID-19 travel restrictions on air quality in Maricopa County, Arizona, which would not have been possible without the historical record that a traditional network provides. Although this study determined that decreases in CO and NO2 were not unique to the travel restrictions, it was limited to only three locations due to network sparseness. The second part of this work expanded the traditional NO2 monitoring network using low-cost sensors, that were first collocated with a reference monitor to evaluate their performance and establish a robust calibration. The sensors were then deployed to the field to varying results; their calibration was further improved by cycling the sensors between deployment and reference locations throughout the summer. This calibrated NO2 data, along with volatile organic compound data, were combined to enhance the understanding of ozone formation in Maricopa County, especially during wildfire season. In addition to being in non-attainment for ozone standards, Maricopa County fails to meet particulate matter under 10 μm (PM10) standards. A large portion of PM10 emissions is attributed to fugitive dust that is either windblown or kicked up by vehicles. The third part of this work demonstrated that Enzyme Induced Carbonate Precipitation (EICP) treatments aggregate soil particles and prevent fugitive dust emissions. The final part of the work examined tire wear PM10 emissions, as vehicles are another significant contributor to PM10. Observations showed a decrease in tire wear PM10 during winter with little change when varying the highway surface type.
ContributorsMiech, Jason Andrew (Author) / Herckes, Pierre (Thesis advisor) / Fraser, Matthew P (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2023
ContributorsGlenn, Erica (Conductor) / Evans, Bartlett R. (Conductor) / Oh, Eun-Mi (Conductor) / Thompson, Jason D. (Conductor) / Schildkret, David (Conductor) / Concert Choir (Performer) / Arizona Statesmen (Performer) / Women's Chorus (Performer) / Gospel Choir (Performer) / Barrett Choir (Performer) / Chamber Singers (Performer) / Choral Union (Performer) / ASU Library. Music Library (Publisher)
Created2017-11-30
165977-Thumbnail Image.png
Description

Though invisible from our vision, and often from our minds as a result, the quality of the air around us has immense impacts on the health of the environment and our populations. Typically, defined by the presence of three main pollutants, particulate matter 10, particulate matter 2.5, and ozone, air

Though invisible from our vision, and often from our minds as a result, the quality of the air around us has immense impacts on the health of the environment and our populations. Typically, defined by the presence of three main pollutants, particulate matter 10, particulate matter 2.5, and ozone, air quality can be highly localized. Because of this, some communities can be hit harder by air quality issues. The South Mountain Village is an example of a community that is being drastically impacted by issues of air quality. Even though air pollution can have an array of causes that are difficult to pin-point, the impacts that it has on human health and quality of life are just the opposite. Consistent exposure to polluted air can result in short term health effects such as discomfort and shortness of breath along with longer term effects such as asthma and lung cancer. Areas with higher concentrations of pollutants in the air often see an increase in the health issues mentioned. In the case of the South Mountain area, there are many direct and indirect sources of the issue. The area has a higher than average amount of industry such as metal and plastic manufacturing, and the residences are mixed right in with these. Additionally, the area has less wealth and a higher population of racial minorities. These two things are not coincidences, as air quality is an environmental issue that is highly systemic. This thesis project will surround the process of developing and implementing ideas to mitigate the negative effects of air quality in the area, as well as exploring sources of the issue -- both scientific and historic. Project ideas ranging from technology to policies will be considered and investigated in order to produce feasible and actionable plans.

ContributorsStokman, Marie (Author) / Alvarez, Kaitlyn (Co-author) / Aguilar, Paula (Co-author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Industrial, Systems & Operations Engineering Prgm (Contributor)
Created2022-05
165980-Thumbnail Image.png
Description

How can we address the causes, impacts, and potential solutions of poor air quality in the Phoenix South Mountain Community? This project focuses on the science, history, and politics surrounding the poor air quality in the South Phoenix area, with an emphasis in creating and implementing local, generational, and technological

How can we address the causes, impacts, and potential solutions of poor air quality in the Phoenix South Mountain Community? This project focuses on the science, history, and politics surrounding the poor air quality in the South Phoenix area, with an emphasis in creating and implementing local, generational, and technological solutions.

ContributorsAguilar, Paula (Author) / Alvarez, Kaitlyn (Co-author) / Stokman, Marie (Co-author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-05
ContributorsUniversity Choirs (Performer) / ASU Library. Music Library (Publisher)
Created2000-11-16
ContributorsSchildkret, David (Conductor) / White, Jamilyn (Performer) / Krison, Danielle (Performer) / Barefield, Robert (Performer) / FitzPatrick, Carole (Performer) / Chamber Singers (Performer) / Choral Union (Performer) / Symphonic Chorale (Performer) / University Symphony Orchestra (Performer) / ASU Library. Music Library (Publisher)
Created2007-04-26