Matching Items (13)
Filtering by

Clear all filters

137102-Thumbnail Image.png
Description
The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth

The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth and improvement, so wind energy has started to explore different directions. The urban environment is a potential direction for wind energy due to its proximity to the bulk of energy demand. CFD analysis has demonstrated that the presence of buildings can accelerate wind speeds between buildings and on rooftops. However, buildings generate areas of increased turbulence at their surface. The turbulence thickness and intensity vary with roof shape, building height, and building orientation. The analysis has concluded that good wind resource is possible in the urban environment in specific locations. With that, turbine selection becomes very important. A comparison has concluded that vertical axis wind turbines are more useful in the urban environment than horizontal axis wind turbines. Furthermore, building-augmented wind turbines are recommended because they are architecturally integrated into a building for the specific purpose of generating more energy. The research has concluded that large-scale generation in the urban environment is unlikely to be successful, but small-scale generation is quite viable. Continued research and investigation on urban wind energy is recommended.
ContributorsKlumpers, Ryan Scott (Author) / Calhoun, Ronald (Thesis director) / Huang, Huei-Ping (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
131841-Thumbnail Image.png
Description
This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft robotic ankle-foot orthosis (SR-AFO) exosuit to aid in supporting the human ankle in the inversion/eversion directions. This design aims to assist individuals affected with chronic ankle instability (CAI) or other impairments to the ankle joint. The MAVS design is made from compliant fabric materials, layered and constrained by thin rigid retainers to prevent volume increase during actuation. The design was optimized to provide the greatest stiffness and least deflection for a beam positioned as a cantilever with a point load. The design of the MAVS took into account passive stiffness of the actuator when combining rigid and compliant materials so that stiffness is maximized when inflated and minimal when passive. An analytic model of the MAVS was created to evaluate the effects in stiffness observed by varying the ratio in length between the rigid pieces and the soft actuator. The results from the analytic model were compared to experimentally obtained results of the MAVS. The MAVS with the greatest stiffness was observed when the gap between the rigid retainers was smallest and the rigid retainer length was smallest. The MAVS design with the highest stiffness at 100 kPa was determined, which required 26.71 ± 0.06 N to deflect the actuator 20 mm, and a resulting stiffness of 1,335.5 N/m and 9.1% margin of error from the model predictions.
ContributorsHertzell, Tiffany (Author) / Lee, Hyunglae (Thesis director) / Sugar, Thomas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131677-Thumbnail Image.png
Description
As the need for environmentally friendly and renewable fuel sources rises, many are considering alternative fuel sources, such as solar power. The device explored in this report uses solar power, in theory, to heat a metal oxide, cerium oxide, to a desired temperature. At specific temperatures and pressures, a reaction

As the need for environmentally friendly and renewable fuel sources rises, many are considering alternative fuel sources, such as solar power. The device explored in this report uses solar power, in theory, to heat a metal oxide, cerium oxide, to a desired temperature. At specific temperatures and pressures, a reaction between an input gas, carbon dioxide or water vapor, and the metal oxide may produce fuel in the form of hydrogen or carbon monoxide. In order to reach the temperatures required by the reaction, a filament inside a high-temperature radiant heater must be heated to the desired temperature. In addition, the system’s pressure range must be satisfied. A pressure and temperature measurement device, as well as a voltage control, must be connected to an interface with a computer in order to monitor the pressure and temperature of different parts of the system. The cerium oxide element must also be constructed and placed inside the system. The desired shape of the cerium oxide material is a tube, to allow the flow of gas through the tubes and system and to provide mechanical strength. To construct the metal oxide tubes, they need to be extruded, dried, and sintered correctly. All the manufactured elements described serve an essential purpose in the system and are discussed further in this document.
This report focuses on the manufacturing of ceria tubes, the construction of a high-temperature radiant heater filament, and the implementation of a pressure measurement device. The manufacturing of ceria tubes includes the extrusion, the drying, and the sintering of the tubes. In addition, heating element filament construction consists of spot-welding certain metals together to create a device similar to that of a light bulb filament. Different methods were considered in each of these areas, and they are described in this report. All of the explorations in this document move towards the final device, a thermochemical reactor for the production of hydrogen (H2) and carbon monoxide (CO) from water (H2O) and carbon dioxide (CO2).
The results of this report indicate that there are several important manufacturing steps to create the most desirable results, in terms of tube manufacturing and heating element design. For the correct tube construction, they must be dried in a drying rack, and they must be sintered in V-groove plates. In addition, the results of the heating element manufacturing indicate that the ideal heating element filament needs to be simple in design (easily fixed), cost-effective, require little construction time, attach to the ends of the system easily, provide mechanical flexibility, and prevent the coil from touching the walls of the tube it lies in. Each aspect of the ideal elements, whether they are tubes or heating elements, is explored in this report.
ContributorsCaron, Danielle (Author) / Milcarek, Ryan (Thesis director) / Ermanoski, Ivan (Committee member) / Stechel, Ellen (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132596-Thumbnail Image.png
Description
Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a PV module shading water, a stand-alone PV module, and unshaded water, it was found that shading water can reduce evaporation and lower PV module operating temperature at the same time. Using averaged data from two days of testing, the volume per unit surface area of water that evaporated per hour was 0.319 cm3/cm2 less for the shaded water compared to the unshaded water. The evaporation rates found in the experiment are compared to those of Lake Mead to see the amount of water lost on a large scale. For the operating temperature of the PV module, the module used for shading had a consistently lower temperature than the stand-alone module. On the first day, the shading module had an average temperature 5.1 C lower than the stand-alone module average temperature. On day two, the shading module had an average temperature 3.4 C lower than the stand-alone module average temperature. Using average temperatures between the two days from 10:30am and 4:45pm, the average daily temperature of the panel used for shading was 4.5C less than the temperature of the stand-alone panel. These results prove water shading by solar PV modules to be effective in reducing evaporation and lowering module operating temperature. Last, suggestions for future studies are discussed, such as performance analysis of the PV modules in this setting, economic analysis of using PV modules as shading, and the isolation of the different factors of evaporation (temperature, wind speed, and humidity).
ContributorsLee, John C (Author) / Phelan, Patrick (Thesis director) / Roedel, Ronald (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133548-Thumbnail Image.png
Description
Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.
ContributorsHolmes, Breanna Swift (Author) / Zhang, Wenlong (Thesis director) / Polygerinos, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134557-Thumbnail Image.png
Description
Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given

Low back pain is a disorder which affects almost 80% of the American population at some time during their lifespan. Approximately, 90% of these episodes are resolved within six weeks to three months. As low back pain is usually a symptom of a medical condition; many cases cannot be given a definite diagnosis which renders the condition difficult to treat. The estimated annual cost for back pain treatment amounts to $50 billion, in the United States alone. Several devices have already been designed for low back pain assistance. However, in the majority, the main drawback appears to be the rigidity of the device, which limits flexibility and comfort. Soft pneumatic actuators have the potential to provide the appropriate applications for low back pain prior- and post-surgery rehabilitation purposes. In this work, the design and development of a soft robotic back orthotic device that has the capability to relieve back pain by assisting patients to fully achieve the upright position and stabilize the lumbosacral spine, is presented. Unlike conventional robotic assistive devices, this pneumatically actuated back orthosis provides dynamic support while being light weight, comfortable and cost affordable.
ContributorsGovin, Deven (Co-author) / Saenz, Luis (Co-author) / Polygerinos, Panagiotis (Thesis director) / Snyder, Laura (Committee member) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic

The traditional understanding of robotics includes mechanisms of rigid structures, which can manipulate surrounding objects, taking advantage of mechanical actuators such as motors and servomechanisms. Although these methods provide the underlying fundamental concepts behind much of modern technological infrastructure, in fields such as manufacturing, automation, and biomedical application, the robotic structures formed by rigid axels on mechanical actuators lack the delicate differential sensors and actuators associated with known biological systems. The rigid structures of traditional robotics also inhibit the use of simple mechanisms in congested and/or fragile environments. By observing a variety of biological systems, it is shown that nature models its structures over millions of years of evolution into a combination of soft structures and rigid skeletal interior supports. Through technological bio-inspired designs, researchers hope to mimic some of the complex behaviors of biological mechanisms using pneumatic actuators coupled with highly compliant materials that exhibit relatively large reversible elastic strain. This paper begins the brief history of soft robotics, the various classifications of pneumatic fluid systems, the associated difficulties that arise with the unpredictable nature of fluid reactions, the methods of pneumatic actuators in use today, the current industrial applications of soft robotics, and focuses in large on the construction of a universally adaptable soft robotic gripper and material application tool. The central objective of this experiment is to compatibly pair traditional rigid robotics with the emerging technologies of sort robotic actuators. This will be done by combining a traditional rigid robotic arm with a soft robotic manipulator bladder for the purposes of object manipulation and excavation of extreme environments.
ContributorsShuster, Eden S. (Author) / Thanga, Jekan (Thesis director) / Asphaug, Erik (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional torque at the ankle joint, previous studies have exhibited consistent gait entrainment to both rigid and soft robotic devices. This entrainment is characterized by consistent phase locking of plantarflexion perturbations to the ‘push off’ event within the gait cycle. However, it is unclear whether such phase locking can be attributed to the plantarflexion assistance from the device or the sensory stimulus of movement at the ankle. To clarify the mechanism of entrainment, an experiment was designed to expose the user to a multitude of varying torques applied at the ankle to assist with plantar flexion. In this experiment, no significant difference in success of subject entrainment occurred when additional torque applied was greater than a detectable level. Force applied at the ankle varied from ~60N to ~130N. This resulted in successful entrainment ~88\% of the time at 98 N, with little to no increase in success as force increased thereafter. Alternatively, success of trials decreased significantly as force was reduced below this level, causing the perturbations to become undetectable by participants. Ultimately this suggests that higher levels of actuator pressure, and thus greater levels of torque applied to the foot, do not increase the likelihood of entrainment during walking. Rather, the results of this study suggest that proper detectable sensory stimulus is the true mechanism for entrainment.

ContributorsKruse, Anna (Author) / Lee, Hyunglae (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12
Description

The goal of themed entertainment is to use activities and environments to tell a story and immerse the guest in a novel experience. By applying these concepts to nonfiction and educational topics, the concept of edutainment is created. In recent years museums have begun utilizing the concept of edutainment and

The goal of themed entertainment is to use activities and environments to tell a story and immerse the guest in a novel experience. By applying these concepts to nonfiction and educational topics, the concept of edutainment is created. In recent years museums have begun utilizing the concept of edutainment and techniques typically found in themed entertainment experiences to capture the attention and focus of guests and create experiences that connect emotionally with them. My goal in this thesis pathway project was to investigate this trend and technique of connecting with an audience and apply it to the STEAMtank project within ASU’s Innovation Space. The goal of STEAMtank is to design and fabricate children’s STEAM museum exhibits in two semesters with focus on accessible design. My team conducted research and interviews exploring current market trends in theme parks and museums, best practice designs and operations, and interests of children to develop the concept for our exhibit, Gust of Dust, which was then fine-tuned, constructed, and installed in the STEAMtank Exhibit Space. Gust of Dust is an exciting exhibit demonstrating the power of a haboob that was developed from preconcept to installation in under a year by two determined and talented interdisciplinary teams. Learning about haboobs connect concepts of environmentalism, earth science, and safety to real concepts in children’s lives.

ContributorsWade, Morgan (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description
This project involved research into solar thermal and geothermal energy generation as possible solutions to the growing U.S. energy crisis. Background research into this topic revealed the effects of climate and environmental impacts as major variables in determining optimal states. Delving into thermodynamic engineering analyses, the main deliverables of this

This project involved research into solar thermal and geothermal energy generation as possible solutions to the growing U.S. energy crisis. Background research into this topic revealed the effects of climate and environmental impacts as major variables in determining optimal states. Delving into thermodynamic engineering analyses, the main deliverables of this research were mathematical models to analyze plant efficiency improvements in order to optimize the cost of operating solar thermal and geothermal power plants. The project concludes with possible future research areas relating to this field.
ContributorsRattner, Andrew (Author) / Beyer, Luke (Co-author) / Kwon, Beomjin (Thesis director) / Wilbur, Joshua (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2024-05