Matching Items (2)
189357-Thumbnail Image.png
Description
Due to the use of fertilizers, concentrations of harmful nitrate have increased in groundwater and surface waters globally in the last century. Water treatment plants primarily use separation techniques for nitrate treatment, but these technologies create a high nitrate concentration brine that is costly to dispose of. This dissertation focuses

Due to the use of fertilizers, concentrations of harmful nitrate have increased in groundwater and surface waters globally in the last century. Water treatment plants primarily use separation techniques for nitrate treatment, but these technologies create a high nitrate concentration brine that is costly to dispose of. This dissertation focuses on catalytic hydrogenation, an emerging technology capable of reducing nitrate to nitrogen gas using hydrogen gas (H2). This technology reduces nitrate at rates >95% and is an improvement over technologies used at water treatment plants, because the nitrate is chemically transformed with harmless byproducts and no nitrate brine. The goal of this dissertation is to upgrade the maturity of catalytic nitrate hydrogenation systems by overcoming several barriers hindering the scale-up of this technology. Objective 1 is to compare different methods of attaching the bimetallic catalyst to a hollow-fiber membrane surface to find a method that results in 1) minimized catalyst loss, and 2) repeatable nitrate removal over several cycles. Results showed that the In-Situ MCfR-H2 deposition was successful in reducing nitrate at a rate of 1.1 min-1gPd-1 and lost less than 0.05% of attached Pd and In cumulatively over three nitrate treatment cycles. Objective 2 is to synthesize catalyst-films with varied In3+ precursor decorated over a Pd0 surface to show the technology can 1) reliably synthesize In-Pd catalyst-films with varied bimetallic ratios, and 2) optimize nitrate removal activity by varying In-Pd ratio. Results showed that nitrate removal activity was optimized with a rate constant of 0.190 mg*min-1L-1 using a catalyst-film with a 0.045 In-Pd ratio. Objective 3 is to perform nitrate reduction in a continuous flow reactor for two months to determine if nitrate removal activity can be sustained over extended operation and identify methods to overcome catalyst deactivation. Results showed that a combination of increased hydraulic residence time and reduced pH was successful in increasing the nitrate removal and decreasing harmful nitrite byproduct selectivity to 0%. These objectives increased the technology readiness of this technology by enabling the reuse of the catalyst, maximizing nitrate reduction activity, and achieving long-term nitrate removal.
ContributorsLevi, Juliana (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Wong, Michael (Committee member) / Lind Thomas, Mary Laura (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2023
187602-Thumbnail Image.png
Description
Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate

Anthropogenic processes have increased the concentration of toxic Se, As and N in water. Oxo-anions of these species are poisonous to aquatic and terrestrial life. Current remediation techniques have low selectivity towards their removal. Understanding the chemistry and physics which control oxo-anion adsorption on metal oxide and the catalytic nitrate reduction to inform improved remediation technologies can be done using Density functional theory (DFT) calculations. The adsorption of selenate, selenite, and arsenate was investigated on the alumina and hematite to inform sorbent design strategies. Adsorption energies were calculated as a function of surface structure, composition, binding motif, and pH within a hybrid implicit-explicit solvation strategy. Correlations between surface property descriptors including water network structure, cationic species identity, and facet and the adsorption energies of the ions show that the surface water network controls the adsorption energy more than any other, including the cationic species of the metal-oxide. Additionally, to achieve selectivity for selenate over sulphate, differences in their electronic structure must be exploited, for example by the reduction of selenate to selenite by Ti3+ cations. Thermochemical or electrochemical reduction pathways to convert NO3- to N2 or NH3, which are benign or value-added products, respectively are examined over single-atom electrocatalysts (SAC) in Cu. The activity and selectivity for nitrate reduction are compared with the competitive hydrogen evolution reaction (HER). Cu suppresses HER but produces toxic NO2- because of a high activation barrier for cleaving the second N-O bond. SACs provide secondary sites for reaction and break traditional linear scaling relationships. Ru-SACs selectively produce NH3 because N-O bond scission is facile, and the resulting N remains isolated on SAC sites; reacting with H+ from solvating H2O to form ammonia. Conversely, Pd-SAC forms N2 because the reduced N* atoms migrate to the Cu surface, which has a low H availability, allowing N atoms to combine to N2. This relation between N* binding preference and reduction product is demonstrated across an array of SAC elements. Hence, the solvation effects on the surface critically alter the activity of adsorption and catalysis and the removal of toxic pollutants can be improved by altering the surface water network.
ContributorsGupta, Srishti (Author) / Muhich, Christopher L (Thesis advisor) / Singh, Arunima (Committee member) / Emady, Heather (Committee member) / Westerhoff, Paul (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2023