Matching Items (4)
Filtering by

Clear all filters

132310-Thumbnail Image.png
Description
The following report is an analysis of the decision to change food distribution at United Food Bank and an analysis on the transition. In order to distribute the best food items in a standard quantity, United Food Bank has come up with the idea of Emergency Food Bags (EFB). Packed

The following report is an analysis of the decision to change food distribution at United Food Bank and an analysis on the transition. In order to distribute the best food items in a standard quantity, United Food Bank has come up with the idea of Emergency Food Bags (EFB). Packed into reusable bags are a fruit product, a vegetable product, a protein, and a starch meal item. The intention is for the EFB to serve as a grocery supplement and products are intentionally picked so recipients can create meals. With this transition, there are many factors to consider such as production levels and government assistance. This report will address all aspects and give recommendations to United Food Bank.
ContributorsKoehler, Bailee Elizabeth (Author) / Eftekhar, Mayhar (Thesis director) / Fowler, John (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132649-Thumbnail Image.png
Description
Through the personal experience of volunteering at ASU Project Humanities, an organization that provides resources such as clothing and toiletries to the homeless population in Downtown Phoenix, I noticed efficiently serving the needs of the homeless population is an important endeavor, but the current processes for Phoenix nonprofits to collect

Through the personal experience of volunteering at ASU Project Humanities, an organization that provides resources such as clothing and toiletries to the homeless population in Downtown Phoenix, I noticed efficiently serving the needs of the homeless population is an important endeavor, but the current processes for Phoenix nonprofits to collect data are manual, ad-hoc, and inefficient. This leads to the research question: is it possible to improve this process of collecting statistics on client needs, tracking donations, and managing resources using technology? Background research includes an interview with ASU Project Humanities, articles by analysts, and related work including case studies of current technologies in the nonprofit community. Major findings include i) a lack of centralized communication in nonprofits collecting needs, tracking surplus donations, and sharing resources, ii) privacy assurance is important to homeless individuals, and iii) pre-existing databases and technological solutions have demonstrated that technology has the ability to make an impact in the nonprofit community. To improve the process, standardization, efficiency, and automation need to increase. As a result of my analysis, the thesis proposes a prototype solution which includes two parts: an inventory database and a web application with forms for user input and tables for the user to view. This solution addresses standardization by showing a consistent way of collecting data on need requests and surplus donations while guaranteeing privacy of homeless individuals. This centralized solution also increases efficiency by connecting different agencies that cater to these clients. Lastly, the solution demonstrates the ability for resources to be made available to each organization which can increase automation. In conclusion, this database and web application has the potential to improve nonprofit organizations’ networking capabilities, resource management, and resource distribution. The percentile of homeless individuals connected to these resources is expected to increase substantially with future live testing and large-scale implementation.
ContributorsKhurana, Baani Kaur (Author) / Bazzi, Rida (Thesis director) / Sankar, Lalitha (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
153400-Thumbnail Image.png
Description
Economic and environmental concerns necessitate the preference for retrofits over new construction in manufacturing facilities for incorporating modern technology, expanding production, becoming more energy-efficient and improving operational efficiency. Despite the technical and functional challenges in retrofits, the expectation from the project team is to; reduce costs, ensure the time to

Economic and environmental concerns necessitate the preference for retrofits over new construction in manufacturing facilities for incorporating modern technology, expanding production, becoming more energy-efficient and improving operational efficiency. Despite the technical and functional challenges in retrofits, the expectation from the project team is to; reduce costs, ensure the time to market and maintain a high standard for quality and safety. Thus, the construction supply chain faces increasing pressure to improve performance by ensuring better labor productivity, among other factors, for efficiency gain. Building Information Modeling (BIM) & off-site prefabrication are determined as effective management & production methods to meet these goals. However, there are limited studies assessing their impact on labor productivity within the constraints of a retrofit environment. This study fills the gap by exploring the impact of BIM on labor productivity (metric) in retrofits (context).

BIM use for process tool installation at a semiconductor manufacturing facility serves as an ideal environment for practical observations. Direct site observations indicate a positive correlation between disruptions in the workflow attributed to an immature use of BIM, waste due to rework and high non-value added time at the labor work face. Root-cause analysis traces the origins of the said disruptions to decision-factors that are critical for the planning, management and implementation of BIM. Analysis shows that stakeholders involved in decision-making during BIM planning, management and implementation identify BIM-value based on their immediate utility for BIM-use instead of the utility for the customers of the process. This differing value-system manifests in the form of unreliable and inaccurate information at the labor work face.

Grounding the analysis in theory and observations, the author hypothesizes that stakeholders of a construction project value BIM and BIM-aspects (i.e. geometrical information, descriptive information and workflows) differently and the accuracy of geometrical information is critical for improving labor productivity when using prefabrication in retrofit construction. In conclusion, this research presents a BIM-value framework, associating stakeholders with their relative value for BIM, the decision-factors for the planning, management and implementation of BIM and the potential impact of those decisions on labor productivity.
ContributorsGhosh, Arundhati (Author) / Chasey, Allan D (Thesis advisor) / Laroche, Dominique-Claude (Committee member) / Fowler, John (Committee member) / Arizona State University (Publisher)
Created2015
154578-Thumbnail Image.png
Description
Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling

Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on off-line model is applied based on system identification and Kalman filtering methods. The developed data-driven modeling framework is validated on various genres of buildings, and the experimental results demonstrate desired performance on building energy forecasting in terms of accuracy and computational efficiency. The framework could be easily implemented into building energy model predictive control (MPC), demand response (DR) analysis and real-time operation decision support systems.
ContributorsCui, Can (Author) / Wu, Teresa (Thesis advisor) / Weir, Jeffery D. (Thesis advisor) / Li, Jing (Committee member) / Fowler, John (Committee member) / Hu, Mengqi (Committee member) / Arizona State University (Publisher)
Created2016