Matching Items (4)
Filtering by

Clear all filters

189363-Thumbnail Image.png
Description
This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution

This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution system as opposed to when it enters buildings after crossing the property line. If drinking water is not properly managed in buildings, it can be a source or amplifier of microbial and chemical contaminants. Unlike regulations for chemical contaminants that are risk-based, for pathogens, regulations are either based on recommended treatment technologies or designated as zero, which is not achievable in practice. Practice-based judgments are typically made at the building level to maintain water quality. This research focuses on two drinking water opportunistic pathogens of public health concern, Legionella pneumophila and Mycobacterium avium complex (MAC). Multiple aspects of drinking water quality in two green buildings were monitored in tandem with water management interventions. Additionally, a quantitative microbial risk assessment framework was used to predict risk-based critical concentrations of MAC for drinking water-related exposures in the indoor environment corresponding to a 1 in 10,000 annual infection target risk benchmark. The overall goal of this work was to inform the development of water management plans and guidelines for buildings that will improve water quality in the built environment and promote better public health. It was determined that a whole building water softening system with ion exchange softening resin and expansion tanks were unexplored reservoirs for the colonization of L. pneumophila. Furthermore, it was observed that typical water management interventions such as flushing and thermal disinfection did not always mitigate water quality issues. Thus, there was a need to implement several atypical interventions such as equipment replacement to improve the building water quality. This work has contributed comprehensive field studies and models that have highlighted the need for additional niches, facility management challenges, and risk tradeoffs for focus in water safety plans. The work also informs additional risk-based water quality policy approaches for reducing drinking water risks.
ContributorsJoshi, Sayalee (Author) / Hamilton, Kerry A (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Conroy-Ben, Otakuye (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2023
156994-Thumbnail Image.png
Description
This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of field parameters (Chapter 3). Monitoring of glucocorticoid hormones in wastewater of a university campus showed (i) elevated stress levels particularly at the start of the semester, (ii) on weekdays relative to weekend days (p = 0.05) (161 ± 42 μg d-1 per person, 122 ± 54 μg d-1 per person; p ≤ 0.05), and (iii) a positive association between levels of stress hormones and nicotine (rs: 0.49) and caffeine (0.63) consumption in this student population (Chapter 4). Also, (i) alcohol consumption determined by WBE was in line with literature estimates for this young sub-population (11.3 ± 7.5 g d-1 per person vs. 10.1 ± 0.8 g d-1 per person), whereas caffeine and nicotine uses were below (114 ± 49 g d-1 per person, 178 ± 19 g d-1 per person; 627 ± 219 g d-1 per person, 927 ± 243 g d-1 per person). The introduction of a novel continuous in situ sampler to WBE brought noted benefits relative to traditional time-integrated sampling, including (i) a higher sample coverage (93% vs. 3%), (ii) an ability to captured short-term analyte pulses (e.g., heroin, fentanyl, norbuprenorphine, and methadone), and (iii) an overall higher mass capture for drugs of abuse like morphine, fentanyl, methamphetamine, amphetamine, and the opioid antagonist metabolite norbuprenorphine (p ≤ 0.01). Methods and devices developed in this work are poised to find applications in the remediation sector and in human health assessments.
ContributorsDriver, Erin Michelle (Author) / Halden, Rolf (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Kavazanjian, Edward (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2018
161878-Thumbnail Image.png
Description
Human impact alters the natural environment via multiple pathways, including contamination from pollutants. This human activity may adversely impact an organism’s ability to respond to environmental change. Using Bisphenol-A (BPA), a common environmental contaminant, I examined how exposure affected behavioral strategies critical for survival in a changing environment. BPA is

Human impact alters the natural environment via multiple pathways, including contamination from pollutants. This human activity may adversely impact an organism’s ability to respond to environmental change. Using Bisphenol-A (BPA), a common environmental contaminant, I examined how exposure affected behavioral strategies critical for survival in a changing environment. BPA is used during plastic manufacturing, and it enters aquatic systems from wastewater streams; however, it is an endocrine-disruptor that has broad health effects from metabolism to behavior at a wide exposure range. In this study, I specifically tested whether environmentally relevant concentrations of BPA impact maximum metabolic rate and boldness in zebrafish, Danio rerio. I also examined activity level, optomotor response, body mass, and standard length to see if I can mechanistically explain any underlying changes caused by BPA. I treated groups of adult zebrafish for 7 days and exposed them to either 0.1% dimethyl sulfoxide (DMSO, control), a low environmentally relevant concentration of BPA (0.02 mg/L), or a 1-fold higher BPA concentration (0.2 mg/L). I found that the low exposure group experienced a decrease in maximum metabolic rate and the high exposure group showed a decrease in boldness. In other words, these changes in metabolism were not dosage dependent while the boldness results were dosage dependent. BPA had no effects on optomotor response, body mass, standard length or activity level. These results suggest that no level of BPA is safe, environmentally relevant concentrations are having an effect on adult organisms’ behavior and health that could affect their survival.
ContributorsLopez, Melissa (Author) / Martins, Emilia P (Thesis advisor) / Suriyampola, Piyumika S (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Arizona State University (Publisher)
Created2021
Description
Current demographic and water use trends prompt concerns for increasing water scarcity. Water reuse and wastewater reuse can help accommodate for some of these concerns. One application of this wastewater reuse can come in the form of agricultural applications. This, however, raises concerns of human and environmental exposure to antibiotic

Current demographic and water use trends prompt concerns for increasing water scarcity. Water reuse and wastewater reuse can help accommodate for some of these concerns. One application of this wastewater reuse can come in the form of agricultural applications. This, however, raises concerns of human and environmental exposure to antibiotic resistance genes and bacteria (ARGs/ARBs). Organizations such as the Center for Disease Control and Prevention (CDC) and the World Health Organization (WHO) cite increasing exposure and cases of antibiotic resistant bacteria related infections. This has led to a need for a more thorough understanding of risk and risk management strategies for these purposes. Biosolids can be used as fertilizers after treatment from wastewater treatment plants and as a result may be a potential avenue for exposure. Biosolids are activated sludge commonly dewatered and/or further treated for agricultural applications and are a focus of this thesis. The objectives of this thesis are (1) to contribute to a literature review of ARGs in biosolids with a specific focus on the effects of different treatment practices; and (2) quantify E. coli bacteria, intI1 (an integron-integrase gene used as an indicator of anthropogenic pollution), some heavy metals, and nutrients (N, P, and K) for newly collected biosolids samples in a multifactorial-designed lettuce growth experiment. Results found that most data points did not report wastewater treatment type. Additionally, TH/TH-MAD appeared to have lower ARG concentrations relative to other treatment types. Organizations such as the U.S. Environmental Protection Agency (USEPA) and the WHO provide maximum permissible limits of certain contaminants in plants and soils. Results found Cadmium concentrations in lettuce to be above these outlined limits. E. coli bacteria and intI1 results varied. Ultimately, in the future there needs to be more consistent reporting guidelines for obtaining ARG/ARB data and developing risk models for assessing potential exposure.
ContributorsKuppravalli, Aditya (Author) / Hamilton, Kerry (Thesis director) / Conroy-Ben, Otakuye (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05