Matching Items (21)
Filtering by

Clear all filters

149934-Thumbnail Image.png
Description
This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or

This research work describes the design of a fault current limiter (FCL) using digital logic and a microcontroller based data acquisition system for an ultra fast pilot protection system. These systems have been designed according to the requirements of the Future Renewable Electric Energy Delivery and Management (FREEDM) system (or loop), a 1 MW green energy hub. The FREEDM loop merges advanced power electronics technology with information tech-nology to form an efficient power grid that can be integrated with the existing power system. With the addition of loads to the FREEDM system, the level of fault current rises because of increased energy flow to supply the loads, and this requires the design of a limiter which can limit this current to a level which the existing switchgear can interrupt. The FCL limits the fault current to around three times the rated current. Fast switching Insulated-gate bipolar transistor (IGBT) with its gate control logic implements a switching strategy which enables this operation. A complete simulation of the system was built on Simulink and it was verified that the FCL limits the fault current to 1000 A compared to more than 3000 A fault current in the non-existence of a FCL. This setting is made user-defined. In FREEDM system, there is a need to interrupt a fault faster or make intelligent deci-sions relating to fault events, to ensure maximum availability of power to the loads connected to the system. This necessitates fast acquisition of data which is performed by the designed data acquisition system. The microcontroller acquires the data from a current transformer (CT). Mea-surements are made at different points in the FREEDM system and merged together, to input it to the intelligent protection algorithm that has been developed by another student on the project. The algorithm will generate a tripping signal in the event of a fault. The developed hardware and the programmed software to accomplish data acquisition and transmission are presented here. The designed FCL ensures that the existing switchgear equipments need not be replaced thus aiding future power system expansion. The developed data acquisition system enables fast fault sensing in protection schemes improving its reliability.
ContributorsThirumalai, Arvind (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150094-Thumbnail Image.png
Description
The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters

The high penetration of photovoltaic (PV) both at the utility and at the distribu-tion levels, has raised concerns about the reliability of grid-tied inverters of PV power systems. Inverters are generally considered as the weak link in PV power systems. The lack of a dedicated qualification/reliability standard for PV inverters is a main barrier in realizing higher level of confidence in reliability. Development of a well-accepted design qualification standard specifically for PV inverters will help pave the way for significant improvement in reliability and performance of inverters across the entire industry. The existing standards for PV inverters such as UL 1741 and IEC 62109-1 primarily focus on safety. IEC 62093 discusses inverter qualification but it includes all the balance of sys-tem components and therefore not specific to PV inverters. There are other general stan-dards for distributed generators including the IEEE1547 series of standards which cover major concerns like utility integration but they are not dedicated to PV inverters and are not written from a design qualification point of view. In this thesis, some of the potential requirements for a design qualification standard for PV inverters are addressed. The IEC 62093 is considered as a guideline and the possible inclusions in the framework for a dedicated design qualification standard of PV inverter are discussed. The missing links in existing PV inverter related standards are identified by performing gap analysis. Dif-ferent requirements of small residential inverters compared to large utility-scale systems, and the emerging requirements on grid support features are also considered. Electric stress test is found to be the key missing link and one of the electric stress tests, the surge withstand test is studied in detail. The use of the existing standards for surge withstand test of residential scale PV inverters is investigated and a method to suitably adopt these standards is proposed. The proposed method is studied analytically and verified using simulation. A design criterion for choosing the switch ratings of the inverter that can per-form reliably under the surge environment is derived.
ContributorsAlampoondi Venkataramanan, Sai Balasubramanian (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Arizona State University (Publisher)
Created2011
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
152155-Thumbnail Image.png
Description
The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog

The smart grid initiative is the impetus behind changes that are expected to culminate into an enhanced distribution system with the communication and control infrastructure to support advanced distribution system applications and resources such as distributed generation, energy storage systems, and price responsive loads. This research proposes a distribution-class analog of the transmission LMP (DLMP) as an enabler of the advanced applications of the enhanced distribution system. The DLMP is envisioned as a control signal that can incentivize distribution system resources to behave optimally in a manner that benefits economic efficiency and system reliability and that can optimally couple the transmission and the distribution systems. The DLMP is calculated from a two-stage optimization problem; a transmission system OPF and a distribution system OPF. An iterative framework that ensures accurate representation of the distribution system's price sensitive resources for the transmission system problem and vice versa is developed and its convergence problem is discussed. As part of the DLMP calculation framework, a DCOPF formulation that endogenously captures the effect of real power losses is discussed. The formulation uses piecewise linear functions to approximate losses. This thesis explores, with theoretical proofs, the breakdown of the loss approximation technique when non-positive DLMPs/LMPs occur and discusses a mixed integer linear programming formulation that corrects the breakdown. The DLMP is numerically illustrated in traditional and enhanced distribution systems and its superiority to contemporary pricing mechanisms is demonstrated using price responsive loads. Results show that the impact of the inaccuracy of contemporary pricing schemes becomes significant as flexible resources increase. At high elasticity, aggregate load consumption deviated from the optimal consumption by up to about 45 percent when using a flat or time-of-use rate. Individual load consumption deviated by up to 25 percent when using a real-time price. The superiority of the DLMP is more pronounced when important distribution network conditions are not reflected by contemporary prices. The individual load consumption incentivized by the real-time price deviated by up to 90 percent from the optimal consumption in a congested distribution network. While the DLMP internalizes congestion management, the consumption incentivized by the real-time price caused overloads.
ContributorsAkinbode, Oluwaseyi Wemimo (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2013
152382-Thumbnail Image.png
Description
A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values

A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values are computed at each level within a sample. If at least one of the P-values is less than a pre-specified significance level, the chart signals out-of-control. The primary advantage of our approach is that only one control chart is required to monitor several parameters simultaneously: the intercept, slope(s), and the error standard deviation. A comprehensive comparison of the proposed method and the existing KMW-Shewhart method for monitoring linear profiles is conducted. In addition, the effect that the number of observations within a sample has on the performance of the proposed method is investigated. The proposed method was also compared to the T^2 method discussed in Kang and Albin (2000) for multivariate, polynomial, and nonlinear profiles. A simulation study shows that overall the proposed P-value method performs satisfactorily for different profile types.
ContributorsAdibi, Azadeh (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Thesis advisor) / Li, Jing (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2013
150480-Thumbnail Image.png
Description
Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at

Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at a low variable cost and produce less greenhouse gases as compared to conventional generators. However, some of the complex issues with renewable resource integration are due to their intermittent and non-dispatchable characteristics. Furthermore, most renewable resources are location constrained and are usually located in regions with insufficient transmission facilities. In order to deal with the challenges presented by renewable resources as compared to conventional resources, the transmission network expansion planning procedures need to be modified. New high voltage lines need to be constructed to connect the remote renewable resources to the existing transmission network to serve the load centers. Moreover, the existing transmission facilities may need to be reinforced to accommodate the large scale penetration of renewable resource. This thesis proposes a methodology for transmission expansion planning with large-scale integration of renewable resources, mainly solar and wind generation. An optimization model is used to determine the lines to be constructed or upgraded for several scenarios of varying levels of renewable resource penetration. The various scenarios to be considered are obtained from a production cost model that analyses the effects that renewable resources have on the transmission network over the planning horizon. A realistic test bed was created using the data for solar and wind resource penetration in the state of Arizona. The results of the production cost model and the optimization model were subjected to tests to ensure that the North American Electric Reliability Corporation (NERC) mandated N-1 contingency criterion is satisfied. Furthermore, a cost versus benefit analysis was performed to ensure that the proposed transmission plan is economically beneficial.
ContributorsHariharan, Sruthi (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2012
151066-Thumbnail Image.png
Description
This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in

This thesis concerns with the impact of renewable generation resources on the power system stability. The rapidly increasing integration of renewable energy sources into the grid can change the way power systems operate and respond to system disturbances. This is because the available inertia from synchronous machines, which helps in damping system oscillations, gets reduced as an increase in renewables like wind and solar photovoltaics is accompanied by a decrease in conventional generators. This aspect of high penetration of renewables has the potential to affect the rotor angle stability and small signal stability of power systems. The system with increased renewables is mathematically modeled to rep-resent wind and solar resources. Transient and small signal stability studies are performed for various operating cases. The main conclusion drawn from the different studies is that increased renewable penetration causes a few instability problems, most of which are either localized and do not adversely affect the over-all system stability. It is also found that the critical inter-area modes of oscillations are sufficiently damped.
ContributorsSingh, Iknoor (Author) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2012
151244-Thumbnail Image.png
Description
The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.
ContributorsHaughton, Daniel Andrew (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2012
149514-Thumbnail Image.png
Description
Composite insulators on overhead lines are frequently subjected to corona discharges due to increased electric field intensities under various conditions. These discharges can cause localized heating on the surface and affect the hydrophobicity of the insulator. A study has been undertaken to quantify and evaluate the thermal degradation that composite

Composite insulators on overhead lines are frequently subjected to corona discharges due to increased electric field intensities under various conditions. These discharges can cause localized heating on the surface and affect the hydrophobicity of the insulator. A study has been undertaken to quantify and evaluate the thermal degradation that composite insulation is subjected to from corona discharges. This has been conducted primarily at the power frequency (60 Hz) and at the low frequency range (37 kHz). Point to plane corona discharge experiments have been performed in the laboratory at both the frequencies and varying levels of thermal degradation has been observed. The amplitude and the frequency of current spikes have been recorded at different voltage levels. A temperature model based on the amplitude and the frequency of current data has been formulated to calculate the maximum temperature attained due to these discharges. Visual thermal degradation has been found to set in at a low frequency range while there is no visual degradation observed at power frequency even when exposed to discharges for relatively much longer periods of time. However, microscopic experiments have been conducted which revealed degradation on the surface at 60 Hz. It has also been found that temperatures in excess of 300 Celsius have been obtained at 37 kHz. This corroborates the thermo gravimetric analysis data that proves thermal degradation in silicone rubber samples at temperatures greater than 300 Celsius. Using the above model, the maximum temperature rise can be evaluated due to discharges occurring on high voltage insulation. This model has also been used to calculate the temperature rise on medium voltage distribution equipment such as composite bushings and stand-off plugs. The samples were subjected to standard partial discharge tests and the corresponding discharge magnitudes have been recorded. The samples passed the tests and the corresponding temperatures plotted have been found to be within thermal limits of the respective insulation used on the samples. The experimental results concur with the theoretical model. A knowledge of the maximum temperatures attained due to these discharges can help in design of insulation with better thermal properties.
ContributorsSangaraju Venkateshwara, Pradeep Varma (Author) / Gorur, Ravi S (Thesis advisor) / Farmer, Richard (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2010