Matching Items (3)
189297-Thumbnail Image.png
Description
This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other

This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other words, the complex architecture and millions of parameters present challenges in finding the right balance between capturing useful patterns and avoiding noise in the data. To address these issues, this thesis explores novel solutions based on knowledge distillation, enabling the learning of robust representations. Leveraging the capabilities of large-scale networks, effective learning strategies are developed. Moreover, the limitations of dependency on external networks in the distillation process, which often require large-scale models, are effectively overcome by proposing a self-distillation strategy. The proposed approach empowers the model to generate high-level knowledge within a single network, pushing the boundaries of knowledge distillation. The effectiveness of the proposed method is not only demonstrated across diverse applications, including image classification, object detection, and semantic segmentation but also explored in practical considerations such as handling data scarcity and assessing the transferability of the model to other learning tasks. Another major obstacle hindering the development of reliable and robust models lies in their black-box nature, impeding clear insights into the contributions toward the final predictions and yielding uninterpretable feature representations. To address this challenge, this thesis introduces techniques that incorporate simple yet powerful deep constraints rooted in Riemannian geometry. These constraints confer geometric qualities upon the latent representation, thereby fostering a more interpretable and insightful representation. In addition to its primary focus on general tasks like image classification and activity recognition, this strategy offers significant benefits in real-world applications where data scarcity is prevalent. Moreover, its robustness in feature removal showcases its potential for edge applications. By successfully tackling these challenges, this research contributes to advancing the field of machine learning and provides a foundation for building more reliable and robust systems across various application domains.
ContributorsChoi, Hongjun (Author) / Turaga, Pavan (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Wenwen (Committee member) / Fazli, Pooyan (Committee member) / Arizona State University (Publisher)
Created2023
168714-Thumbnail Image.png
Description
Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Deep neural networks follow the ``deeper model with deeper confidence'' belief to gain a higher recognition accuracy. However, reducing these networks' computational costs remains a challenge, which impedes their deployment on embedded devices.

Deep neural network-based methods have been proved to achieve outstanding performance on object detection and classification tasks. Deep neural networks follow the ``deeper model with deeper confidence'' belief to gain a higher recognition accuracy. However, reducing these networks' computational costs remains a challenge, which impedes their deployment on embedded devices. For instance, the intersection management of Connected Autonomous Vehicles (CAVs) requires running computationally intensive object recognition algorithms on low-power traffic cameras. This dissertation aims to study the effect of a dynamic hardware and software approach to address this issue. Characteristics of real-world applications can facilitate this dynamic adjustment and reduce the computation. Specifically, this dissertation starts with a dynamic hardware approach that adjusts itself based on the toughness of input and extracts deeper features if needed. Next, an adaptive learning mechanism has been studied that use extracted feature from previous inputs to improve system performance. Finally, a system (ARGOS) was proposed and evaluated that can be run on embedded systems while maintaining the desired accuracy. This system adopts shallow features at inference time, but it can switch to deep features if the system desires a higher accuracy. To improve the performance, ARGOS distills the temporal knowledge from deep features to the shallow system. Moreover, ARGOS reduces the computation furthermore by focusing on regions of interest. The response time and mean average precision are adopted for the performance evaluation to evaluate the proposed ARGOS system.
ContributorsFarhadi, Mohammad (Author) / Yang, Yezhou (Thesis advisor) / Vrudhula, Sarma (Committee member) / Wu, Carole-Jean (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2022
193384-Thumbnail Image.png
Description
Machine learning models are increasingly employed by smart devices on the edge to support important applications such as real-time virtual assistants and privacy-preserving healthcare. However, deploying state-of-the-art (SOTA) deep learning models on devices faces multiple serious challenges. First, it is infeasible to deploy large models on resource-constrained edge devices whereas

Machine learning models are increasingly employed by smart devices on the edge to support important applications such as real-time virtual assistants and privacy-preserving healthcare. However, deploying state-of-the-art (SOTA) deep learning models on devices faces multiple serious challenges. First, it is infeasible to deploy large models on resource-constrained edge devices whereas small models cannot achieve the SOTA accuracy. Second, it is difficult to customize the models according to diverse application requirements in accuracy and speed and diverse capabilities of edge devices. This study proposes several novel solutions to comprehensively address the above challenges through automated and improved model compression. First, it introduces Automatic Attention Pruning (AAP), an adaptive, attention-based pruning approach to automatically reduce model parameters while meeting diverse user objectives in model size, speed, and accuracy. AAP achieves an impressive 92.72% parameter reduction in ResNet-101 on Tiny-ImageNet without causing any accuracy loss. Second, it presents Self-Supervised Quantization-Aware Knowledge Distillation (SQAKD), a framework for reducing model precision without supervision from labeled training data. For example, it quantizes VGG-8 to 2 bits on CIFAR-10 without any accuracy loss. Finally, the study explores two more works, Contrastive Knowledge Distillation Framework (CKDF) and Log-Curriculum based Module Replacing (LCMR), for further improving the performance of small models. All the works proposed in this study are designed to address real-world challenges, and have been successfully deployed on diverse hardware platforms, including cloud instances and edge devices, catalyzing AI for the edge.
ContributorsZhao, Kaiqi (Author) / Zhao, Ming (Thesis advisor) / Li, Baoxin (Committee member) / Zou, Jia (Committee member) / Yang, Yingzhen (Committee member) / Arizona State University (Publisher)
Created2024