Matching Items (5)
172860-Thumbnail Image.png
Description

Established in tandem with Singapore's national Biomedical Sciences Initiatives, the Bioethics Advisory Committee (BAC) was established by the Singapore Cabinet in December 2000 to examine the potential ethical, legal, and social issues arising from Singapore's biomedical research sector, and to recommend policy to Singapore's government. BAC's deliberations on embryonic stem

Established in tandem with Singapore's national Biomedical Sciences Initiatives, the Bioethics Advisory Committee (BAC) was established by the Singapore Cabinet in December 2000 to examine the potential ethical, legal, and social issues arising from Singapore's biomedical research sector, and to recommend policy to Singapore's government. BAC's deliberations on embryonic stem cell research helped shape the government policies that helped Singapore pursue its goal of becoming one of the biggest investors of embryonic stem cell research in the early twenty-first century.

Created2014-03-14
172889-Thumbnail Image.png
Description

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended

Ethical Issues in Human Stem Cell Research: Executive Summary was published in September 1999 by The US National Bioethics Advisory Commission in response to a national debate about whether or not the US federal government should fund embryonic stem cell research. Ethical Issues in Human Stem Cell Research recommended policy to US President William Clinton's administration, which advocated for federal spending on the use of stem research on stem cells that came from embryos left over from in vitro fertilization (IVF) fertility treatments. Although NBAC's proposals never became legislation, the report helped shape public, private, and international discourse on stem cell research policy.

Created2014-04-01
173719-Thumbnail Image.png
Description

"MicroSort, developed in 1990 by the Genetics and IVF Institute, is a form of pre-conception sex selection technology for humans. Laboratories located around the world use MicroSort technology to help couples increase their chances of conceiving a child of their desired sex. MicroSort separates male sperm cells based on which

"MicroSort, developed in 1990 by the Genetics and IVF Institute, is a form of pre-conception sex selection technology for humans. Laboratories located around the world use MicroSort technology to help couples increase their chances of conceiving a child of their desired sex. MicroSort separates male sperm cells based on which sex chromosome they contain, which results in separated semen samples that contain a higher percentage of sperm cells that carry the same sex chromosome. The technology ultimately enables couples to choose the sex of their future child by choosing semen samples that predominately contain sperm with the X chromosome for a female or Y chromosome for a male. MicroSort technology is a sperm sorting technique that provides couples worldwide a means of pre-conception sex selection.

Created2019-07-09
171798-Thumbnail Image.png
Description
The blood-brain-barrier (BBB) is a significant obstacle for treating many neurological disorders. Bubble-assisted focused ultrasound (BAFUS) medicated BBB disruption is a promising technology that enables the delivery of large drug doses at targeted locations across the BBB. However, the current lack of an in vitro model of this process hinders

The blood-brain-barrier (BBB) is a significant obstacle for treating many neurological disorders. Bubble-assisted focused ultrasound (BAFUS) medicated BBB disruption is a promising technology that enables the delivery of large drug doses at targeted locations across the BBB. However, the current lack of an in vitro model of this process hinders the full understanding of BAFUS BBB disruption for better translation into clinics. In this work, a US-transparent organ-on-chip device has been fabricated that can be critical for the in vitro modeling of the BAFUS BBB disruption. The transparency of the device window to focused ultrasound (FUS) was calculated theoretically and demonstrated by experiments. Nanobubbles were fabricated, characterized by cryogenic transmission electron microscopy (cryo-TEM), and showed bubble cavitation under FUS. Human colorectal adenocarcinoma (Caco-2) cells were used to form a good cellular barrier for BAFUS barrier disruption, as suggested by the measured permeability and transepithelial electrical resistance (TEER). Finally, barrier disruption and recovery were observed in BAFUS disrupted US-transparent organ-on-chips with Caco-2 barriers, showing great promise of the platform for future modeling BAFUS BBB disruption in vitro.
ContributorsAkkad, Adam Rifat (Author) / Gu, Jian (Thesis advisor) / Nikkhah, Mehdi (Thesis advisor) / Belohlavek, Marek (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2022
Description
The natural healing process for bone has multiple signaling cascades where several soluble factors are expressed at specific times to encourage regeneration. Human mesenchymal stromal cells (hMSCs) have three stages of osteogenic differentiation: an increase in cell number (day 1-4), early cell differentiation showing alkaline phosphatase (ALP) expression (day 5-14),

The natural healing process for bone has multiple signaling cascades where several soluble factors are expressed at specific times to encourage regeneration. Human mesenchymal stromal cells (hMSCs) have three stages of osteogenic differentiation: an increase in cell number (day 1-4), early cell differentiation showing alkaline phosphatase (ALP) expression (day 5-14), and deposition of calcium and phosphate (day 14-28). The first two stages are of particular interest since cell adhesion peptides have been shown to have biological significance during these early stages of bone regeneration. However, far less is known about the temporal dependence of these signals. To mimic these complex systems, developing dynamic biomaterials has become a popular research area over the past decade. Advances in chemistry, materials science, and manufacturing have enabled the development of complex biomaterials that can mimic dynamic cues in the extracellular matrix. One specific area of interest is spatiotemporal control of multiple biomolecules; however, this has generally required diverse chemical approaches making the process difficult and impractical. To circumvent these issues, I developed a novel method that combines a photoresponsive hydrogel with single-stranded DNA to spatiotemporally control multiple biomolecules using a single conjugation scheme. Here, I describe a detailed protocol to manufacture a fully reversible, spatiotemporal platform using DNA handles. Norbornene-modified hyaluronic acid hydrogels were used to spatially control biomolecule presentation while single-stranded DNA was used to temporally control biomolecule presentation via toehold-mediated strand displacement. This platform was used to orthogonally control the presentation of multiple biomolecules with simple and complex spatial patterning, as well as control the cell morphology of hMSCs by tuning the presentation of the cell adhesion peptide RGDS. Then, this system was applied to study the temporal presentation of cell adhesion peptides and their effect on early osteogenic differentiation of hMSCs in vitro. The peptides used were RGDS, HAVDI, and OGP. OGP alone expressed higher ALP when presented from day 7-14 than day 0-7 or 0-14. When RGDS, HAVDI, and OGP were combined, there was an increase in ALP activity when HAVDI was presented from day 0-3 indicating that HAVDI plays an important role at earlier time points during osteogenic differentiation.
ContributorsFumasi, Fallon Marie (Author) / Holloway, Julianne L (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Green, Matthew D (Committee member) / Stabenfeldt, Sarah E (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2021