Matching Items (4)
189327-Thumbnail Image.png
Description
In recent years, the proliferation of deep neural networks (DNNs) has revolutionized the field of artificial intelligence, enabling advancements in various domains. With the emergence of efficient learning techniques such as quantization and distributed learning, DNN systems have become increasingly accessible for deployment on edge devices. This accessibility brings significant

In recent years, the proliferation of deep neural networks (DNNs) has revolutionized the field of artificial intelligence, enabling advancements in various domains. With the emergence of efficient learning techniques such as quantization and distributed learning, DNN systems have become increasingly accessible for deployment on edge devices. This accessibility brings significant benefits, including real-time inference on the edge, which mitigates communication latency, and on-device learning, which addresses privacy concerns and enables continuous improvement. However, the resource limitations of edge devices pose challenges in equipping them with robust safety protocols, making them vulnerable to various attacks. Two notable attacks that affect edge DNN systems are Bit-Flip Attacks (BFA) and architecture stealing attacks. BFA compromises the integrity of DNN models, while architecture stealing attacks aim to extract valuable intellectual property by reverse engineering the model's architecture. Furthermore, in Split Federated Learning (SFL) scenarios, where training occurs on distributed edge devices, Model Inversion (MI) attacks can reconstruct clients' data, and Model Extraction (ME) attacks can extract sensitive model parameters. This thesis aims to address these four attack scenarios and develop effective defense mechanisms. To defend against BFA, both passive and active defensive strategies are discussed. Furthermore, for both model inference and training, architecture stealing attacks are mitigated through novel defense techniques, ensuring the integrity and confidentiality of edge DNN systems. In the context of SFL, the thesis showcases defense mechanisms against MI attacks for both supervised and self-supervised learning applications. Additionally, the research investigates ME attacks in SFL and proposes countermeasures to enhance resistance against potential ME attackers. By examining and addressing these attack scenarios, this research contributes to the security and privacy enhancement of edge DNN systems. The proposed defense mechanisms enable safer deployment of DNN models on resource-constrained edge devices, facilitating the advancement of real-time applications, preserving data privacy, and fostering the widespread adoption of edge computing technologies.
ContributorsLi, Jingtao (Author) / Chakrabarti, Chaitali (Thesis advisor) / Fan, Deliang (Committee member) / Cao, Yu (Committee member) / Trieu, Ni (Committee member) / Arizona State University (Publisher)
Created2023
168454-Thumbnail Image.png
Description
Federated Learning (FL) is envisaged to be a promising solution for collaboratively training a machine learning model while keeping the training data decentralized and private. Instead of sharing raw data to the central entity, the participating client devices share focused updates for aggregation to ensure global convergence of the model.

Federated Learning (FL) is envisaged to be a promising solution for collaboratively training a machine learning model while keeping the training data decentralized and private. Instead of sharing raw data to the central entity, the participating client devices share focused updates for aggregation to ensure global convergence of the model. Owing to the shortcomings of manually handcrafted neural network architectures, the research community is striving to develop Neural Architecture Search (NAS) approaches to automatically search for optimal networks that fit the clients’ data. Despite the inaccessibility of clients’ data in an FL setting, the federated NAS literature has recently witnessed great progress to apply these NAS techniques to an FL setting. However, one of the key bottlenecks of Federated Learning is the cost of communication between clients and the server, and the state-of-the-art federated NAS techniques search for networks with millions of parameters that require several rounds of communication to find the optimal weight parameters. Also, deploying a network having millions of parameters on edge devices (which are the typical participants in an FL process) is infeasible due to its computational limitations and increased latency. Thus, this work proposes Weight-Agnostic Federated Neural Architecture Search (WFNAS), a novel evolutionary framework to search for well-performing and minimally connected weight-agnostic network architectures in an FL setting. As the connectivity of the networks themselves is the solution, there is no need for weight training and hyperparameter tuning, reducing the communication overhead significantly. The experiments indicate a gain of nearly 40% for orthogonal (vertical FL) data distributions compared to local training. This work is the first federated NAS technique in the literature for vertical FL. Although the experiments are performed in a resource-constrained environment, the aim of this thesis is to show a new direction of research to the FL community.
ContributorsThakkar, Om (Author) / Bazzi, Rida (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2021
168293-Thumbnail Image.png
Description
Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of

Edge networks pose unique challenges for machine learning and network management. The primary objective of this dissertation is to study deep learning and adaptive control aspects of edge networks and to address some of the unique challenges therein. This dissertation explores four particular problems of interest at the intersection of edge intelligence, deep learning and network management. The first problem explores the learning of generative models in edge learning setting. Since the learning tasks in similar environments share model similarity, it is plausible to leverage pre-trained generative models from other edge nodes. Appealing to optimal transport theory tailored towards Wasserstein-1 generative adversarial networks, this part aims to develop a framework which systematically optimizes the generative model learning performance using local data at the edge node while exploiting the adaptive coalescence of pre-trained generative models from other nodes. In the second part, a many-to-one wireless architecture for federated learning at the network edge, where multiple edge devices collaboratively train a model using local data, is considered. The unreliable nature of wireless connectivity, togetherwith the constraints in computing resources at edge devices, dictates that the local updates at edge devices should be carefully crafted and compressed to match the wireless communication resources available and should work in concert with the receiver. Therefore, a Stochastic Gradient Descent based bandlimited coordinate descent algorithm is designed for such settings. The third part explores the adaptive traffic engineering algorithms in a dynamic network environment. The ages of traffic measurements exhibit significant variation due to asynchronization and random communication delays between routers and controllers. Inspired by the software defined networking architecture, a controller-assisted distributed routing scheme with recursive link weight reconfigurations, accounting for the impact of measurement ages and routing instability, is devised. The final part focuses on developing a federated learning based framework for traffic reshaping of electric vehicle (EV) charging. The absence of private EV owner information and scattered EV charging data among charging stations motivates the utilization of a federated learning approach. Federated learning algorithms are devised to minimize peak EV charging demand both spatially and temporarily, while maximizing the charging station profit.
ContributorsDedeoglu, Mehmet (Author) / Zhang, Junshan (Thesis advisor) / Kosut, Oliver (Committee member) / Zhang, Yanchao (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2021
187813-Thumbnail Image.png
Description
The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem

The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem explores the impact of social learning in collecting and trading unverifiable information where a data collector purchases data from users through a payment mechanism. Each user starts with a personal signal which represents the knowledge about the underlying state the data collector desires to learn. Through social interactions, each user also acquires additional information from his neighbors in the social network. It is revealed that both the data collector and the users can benefit from social learning which drives down the privacy costs and helps to improve the state estimation for a given total payment budget. In the second half, a federated learning scheme to train a global learning model with strategic agents, who are not bound to contribute their resources unconditionally, is considered. Since the agents are not obliged to provide their true stochastic gradient updates and the server is not capable of directly validating the authenticity of reported updates, the learning process may reach a noncooperative equilibrium. First, the actions of the agents are assumed to be binary: cooperative or defective. If the cooperative action is taken, the agent sends a privacy-preserved version of stochastic gradient signal. If the defective action is taken, the agent sends an arbitrary uninformative noise signal. Furthermore, this setup is extended into the scenarios with more general actions spaces where the quality of the stochastic gradient updates have a range of discrete levels. The proposed methodology evaluates each agent's stochastic gradient according to a reference gradient estimate which is constructed from the gradients provided by other agents, and rewards the agent based on that evaluation.
ContributorsAkbay, Abdullah Basar (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Committee member) / Kosut, Oliver (Committee member) / Ewaisha, Ahmed (Committee member) / Arizona State University (Publisher)
Created2023