Matching Items (2)
168716-Thumbnail Image.png
Description
Stress is one of the critical factors in daily lives, as it has a profound impact onperformance at work and decision-making processes. With the development of IoT technology, smart wearables can handle diverse operations, including networking and recording biometric signals. Also, it has become easier for individual users to selfdetect stress with

Stress is one of the critical factors in daily lives, as it has a profound impact onperformance at work and decision-making processes. With the development of IoT technology, smart wearables can handle diverse operations, including networking and recording biometric signals. Also, it has become easier for individual users to selfdetect stress with recorded data since these wearables as well as their accompanying smartphones now have data processing capability. Edge computing on such devices enables real-time feedback and in turn preemptive identification of reactions to stress. This can provide an opportunity to prevent more severe consequences that might result if stress is unaddressed. From a system perspective, leveraging edge computing allows saving energy such as network bandwidth and latency since it processes data in proximity to the data source. It can also strengthen privacy by implementing stress prediction at local devices without transferring personal information to the public cloud. This thesis presents a framework for real-time stress prediction using Fitbit and machine learning with the support from cloud computing. Fitbit is a wearable tracker that records biometric measurements using optical sensors on the wrist. It also provides developers with platforms to design custom applications. I developed an application for the Fitbit and the user’s accompanying mobile device to collect heart rate fluctuations and corresponding stress levels entered by users. I also established the dataset collected from police cadets during their academy training program. Machine learning classifiers for stress prediction are built using classic models and TensorFlow in the cloud. Lastly, the classifiers are optimized using model compression techniques for deploying them on the smartphones and analyzed how efficiently stress prediction can be performed on the edge.
ContributorsSim, Sang-Hun (Author) / Zhao, Ming (Thesis advisor) / Roberts, Nicole (Committee member) / Zou, Jia (Committee member) / Arizona State University (Publisher)
Created2022
165173-Thumbnail Image.png
Description

As threats emerge, change, and grow, the life of a police officer continues to intensify. To help support police training curriculums and police cadets through this critical career juncture, this study proposes a state of the art approach to stress prediction and intervention through wearable devices and machine learning models.

As threats emerge, change, and grow, the life of a police officer continues to intensify. To help support police training curriculums and police cadets through this critical career juncture, this study proposes a state of the art approach to stress prediction and intervention through wearable devices and machine learning models. As an integral first step of a larger study, the goal of this research is to provide relevant information to machine learning models to formulate a correlation between stress and police officers’ physiological responses on and off on the job. Fitbit devices were leveraged for data collection and were complemented with a custom built Fitbit application, called StressManager, and study dashboard, termed StressWatch. This analysis uses data collected from 15 training cadets at the Phoenix Police Regional Training Academy over a 13 week span. Close collaboration with these participants was essential; the quality of data collection relied on consistent “syncing” and troubleshooting of the Fitbit devices. After the data were collected and cleaned, features related to steps, calories, movement, location, and heart rate were extracted from the Fitbit API and other supplemental resources and passed through to empirically chosen machine learning models. From the results of these models, we formulate that events of increased intensity combined with physiological spikes contribute to the overall stress perception of a police training cadet

ContributorsParanjpe, Tara (Author) / Zhao, Ming (Thesis director) / Roberts, Nicole (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05